You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The type of control system used for electrical machines depends on the use (nature of the load, operating states, etc.) to which the machine will be put. The precise type of use determines the control laws which apply. Mechanics are also very important, because they affect performance. Another factor of essential importance in industrial applications is operating safety. Finally, the problem of how to control a number of different machines, whose interactions and outputs must be coordinated, is addressed and solutions are presented. These and other issues are addressed here by a range of expert contributors, each of whom are specialists in their particular field. This book is primarily aimed at those involved in complex systems design, but engineers in a range of related fields such as electrical engineering, instrumentation and control, and industrial engineering, will also find this a useful source of information.
Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park’s transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in industry. Both, conventional control strategies like vector control (either in the synchronous reference frame or in the rotor frame) and advanced control theories like direct control and predictive control are thoroughly presented. In this context, a significant place is reserved to sensorless control which is an important and critical issue in tomorrow’s motors.
Published in the year 2005, World Yearbook of Education 1985, is a valuable contribution to the field of Major Works.
A trend of investigation of Nonlinear Control Systems has been present over the last few decades. As a result the methods for its analysis and design have improved rapidly. This book includes nonlinear design topics such as Feedback Linearization, Lyapunov Based Control, Adaptive Control, Optimal Control and Robust Control. All chapters discuss different applications that are basically independent of each other. The book will provide the reader with information on modern control techniques and results which cover a very wide application area. Each chapter attempts to demonstrate how one would apply these techniques to real-world systems through both simulations and experimental settings.
Sensor Fusion - Foundation and Applications comprehensively covers the foundation and applications of sensor fusion. This book provides some novel ideas, theories, and solutions related to the research areas in the field of sensor fusion. The book explores some of the latest practices and research works in the area of sensor fusion. The book contains chapters with different methods of sensor fusion for different engineering as well as non-engineering applications. Advanced applications of sensor fusion in the areas of mobile robots, automatic vehicles, airborne threats, agriculture, medical field and intrusion detection are covered in this book. Sufficient evidences and analyses have been provided in the chapter to show the effectiveness of sensor fusion in various applications. This book would serve as an invaluable reference for professionals involved in various applications of sensor fusion.
This second edition describes the fundamentals of modelling and simulation of continuous-time, discrete time, discrete-event and large-scale systems. Coverage new to this edition includes: a chapter on non-linear systems analysis and modelling, complementing the treatment of of continuous-time and discrete-time systems and a chapter on the computer animation and visualization of dynamical systems motion.
Processing information and analyzing data efficiently and effectively is crucial for any company that wishes to stay competitive in its respective market. Nonlinear data presents new challenges to organizations, however, due to its complexity and unpredictability. The only technology that can properly handle this form of data is artificial neural networks. These modeling systems present a high level of benefits in analyzing complex data in a proficient manner, yet considerable research on the specific applications of these intelligent components is significantly deficient. Applications of Artificial Neural Networks for Nonlinear Data is a collection of innovative research on the contemporary nature of artificial neural networks and their specific implementations within data analysis. While highlighting topics including propagation functions, optimization techniques, and learning methodologies, this book is ideally designed for researchers, statisticians, academicians, developers, scientists, practitioners, students, and educators seeking current research on the use of artificial neural networks in diagnosing and solving nonparametric problems.
SICICA'97 was the third symposium in the series (1992, Malaga - Spain; 1994, Budapest - Hungary). It was sponsored by the Technical Committee on Components and Instruments and was organized by the Laboratoire d'Automatique et de MicroInformatique Industrielle, Universiteacute; de Savoie, on behalf of AFCET, the National Member Organization. The symposium was held in the Impeacute;rial Palace Congress Center, Annecy. 178 papers were submitted as draft papers and reviewed by the International Program Committee members who selected 117 papers coming from 25 countries. The topics covered include: the evolution of electronic components, especially mircocontrollers and digital signal processors which can be used for the implementation of instruments where intelligence is located in the processing; problems and solutions using fieldbuses for the control of automated processes; and the principal phases in the industrialisation of microsystems which associate micromechanics and microelectronics. The Symposium showed the vitality of the research in the field of intelligent instruments and components.