You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The third edition of Hodges and Jackson’s Analysis and Design of Digital Integrated Circuits has been thoroughly revised and updated by a new co-author, Resve Saleh of the University of British Columbia. The new edition combines the approachability and concise nature of the Hodges and Jackson classic with a complete overhaul to bring the book into the 21st century. The new edition has replaced the emphasis on BiPolar with an emphasis on CMOS. The outdated MOS transistor model used throughout the book will be replaced with the now standard deep submicron model. The material on memory has been expanded and updated. As well the book now includes more on SPICE simulation and new problems that reflect recent technologies. The emphasis of the book is on design, but it does not neglect analysis and has as a goal to provide enough information so that a student can carry out analysis as well as be able to design a circuit. This book provides an excellent and balanced introduction to digital circuit design for both students and professionals.
Mixed-Mode Simulation and Analog Multilevel Simulation addresses the problems of simulating entire mixed analog/digital systems in the time-domain. A complete hierarchy of modeling and simulation methods for analog and digital circuits is described. Mixed-Mode Simulation and Analog Multilevel Simulation also provides a chronology of the research in the field of mixed-mode simulation and analog multilevel simulation over the last ten to fifteen years. In addition, it provides enough information to the reader so that a prototype mixed-mode simulator could be developed using the algorithms in this book. Mixed-Mode Simulation and Analog Multilevel Simulation can also be used as documentation for the SPLICE family of mixed-mode programs as they are based on the algorithms and techniques described in this book.
The tools and techniques you need to break the analog design bottleneck! Ten years ago, analog seemed to be a dead-end technology. Today, System-on-Chip (SoC) designs are increasingly mixed-signal designs. With the advent of application-specific integrated circuits (ASIC) technologies that can integrate both analog and digital functions on a single chip, analog has become more crucial than ever to the design process. Today, designers are moving beyond hand-crafted, one-transistor-at-a-time methods. They are using new circuit and physical synthesis tools to design practical analog circuits; new modeling and analysis tools to allow rapid exploration of system level alternatives; and new simula...
The second half of this century will remain as the era of proliferation of electronic computers. They did exist before, but they were mechanical. During next century they may perform other mutations to become optical or molecular or even biological. Actually, all these aspects are only fancy dresses put on mathematical machines. This was always recognized to be true in the domain of software, where "machine" or "high level" languages are more or less rigourous, but immaterial, variations of the universaly accepted mathematical language aimed at specifying elementary operations, functions, algorithms and processes. But even a mathematical machine needs a physical support, and this is what har...
This unique book deals with the migration of existing hard IP from one technology to another, using repeatable procedures. It will allow CAD practitioners to quickly develop methodologies that capitalize on the large volumes of legacy data available within a company today.
Research in the field of automatic speech and speaker recognition has made a number of significant advances in the last two decades, influenced by advances in signal processing, algorithms, architectures, and hardware. These advances include: the adoption of a statistical pattern recognition paradigm; the use of the hidden Markov modeling framework to characterize both the spectral and the temporal variations in the speech signal; the use of a large set of speech utterance examples from a large population of speakers to train the hidden Markov models of some fundamental speech units; the organization of speech and language knowledge sources into a structural finite state network; and the use...
The implementation of networks-on-chip (NoC) technology in VLSI integration presents a variety of unique challenges. To deal with specific design solutions and research hurdles related to intra-chip data exchange, engineers are challenged to invoke a wide range of disciplines and specializations while maintaining a focused approach. Leading Researchers Present Cutting-Edge Designs Tools Networks-on-Chips: Theory and Practice facilitates this process, detailing the NoC paradigm and its benefits in separating IP design and functionality from chip communication requirements and interfacing. It starts with an analysis of 3-D NoC architectures and progresses to a discussion of NoC resource alloca...
Software Synthesis from Dataflow Graphs addresses the problem of generating efficient software implementations from applications specified as synchronous dataflow graphs for programmable digital signal processors (DSPs) used in embedded real- time systems. The advent of high-speed graphics workstations has made feasible the use of graphical block diagram programming environments by designers of signal processing systems. A particular subset of dataflow, called Synchronous Dataflow (SDF), has proven efficient for representing a wide class of unirate and multirate signal processing algorithms, and has been used as the basis for numerous DSP block diagram-based programming environments such as ...