You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume ...
The Amphipathic Helix is a comprehensive volume discussing amphipathic helices in systems as diverse as serum lipoproteins, lung surfactant, cytotoxic peptides, ion channels, mitochondrial targeting, peptide hormones, G proteins, T-cell recognition, DNA binding proteins, and antifreeze proteins. The book also includes general introductory material that defines amphipathic helices, discusses methods to identify amphipathic helical segments from the amino acid sequence of a protein, illustrates how amphipathic helices can be used in the de novo design of peptide and protein structures, and describes how these helices stabilize protein structures. There is also a section on techniques to determine helix orientation in a membrane environment using polarized attenuated total reflection infrared spectroscopy or solid state NMR spectroscopy. Recent developments on all these topics have been discussed by leading experts in this reference for researchers and students in biochemistry, biophysics, and pharmacology.
Biological membranes provide the fundamental structure of cells and viruses. Because much of what happens in a cell or in a virus occurs on, in, or across biological membranes, the study of membranes has rapidly permeated the fields of biology, pharmaceutical chemistry, and materials science. The Structure of Biological Membranes, Third Edition pro
Current Topics in Membranes is targeted toward scientists and researchers in biochemistry and molecular and cellular biology, providing the necessary membrane research to assist them in discovering the current state of a particular field and in learning where that field is heading. This volume offers an up to date presentation of current knowledge in the field of Lipid Domains. - Written by leading experts - Contains original material, both textual and illustrative, that should become a very relevant reference material - The material is presented in a very comprehensive manner - Both researchers in the field and general readers should find relevant and up-to-date information
The major lipid components of biological membranes can undergo many diverse and fascinating morphological rearrangements. Studies of these diverse phases and the manner in which they are formed tends to alter the properties of ordinary bilayer membranes. This book examines the structural and biological roles of lipids forming non-lamellar structures.Key Features* Characterization of non-lamellar structures * Protein activity and membrane properties* Analysis of membrane fusion* Affect of non-lamellar forming lipids on biological systems
This volume in the well-established Methods in Enzymology series features methods for the study of lipids using mass spectrometry techniques. Articles in this volume cover topics such as Phospholipase A1 assays using a radio-labeled substrate and mass spectrometry; Real-time Cell Assays of Phospholipases A2 Using Fluorogenic Phospholipids; Analysis and Pharmacological Targeting of Phospholipase C â interactions with G proteins; Biochemical Analysis of Phospholipase D.; Measurement of Autotaxin/Lysophospholipase D Activity; Platelet-Activating Factor; Quantitative measurement of PtdIns(3,4,5)P3; Measuring Phosphorylated Akt And Other Phosphoinositide 3-Kinase-Regulated Phosphoproteins In Pri...
Antimicrobial peptides (AMPs) have attracted extensive research attention worldwide. Harnessing and creating AMPs synthetically has the potential to help overcome increasing antibiotic resistance in many pathogens. This new edition lays the foundations for studying AMPs, including a discovery timeline, terminology, nomenclature and classifications. It covers current advances in AMP research and examines state-of-the-art technologies such as bioinformatics, combinatorial libraries, high-throughput screening, database-guided identification, genomics and proteomics-based prediction, and structure-based design of AMPs. Thoroughly updated and revised, this second edition contains new content cove...
Biological membranes have long been identified as key elements in a wide variety of cellular processes including cell defense communication, photosynthesis, signal transduction, and motility; thus they emerge as primary targets in both basic and applied research. This book brings together in a single volume the most recent views of experts in the area of protein–lipid interactions, providing an overview of the advances that have been achieved in the field in recent years, from very basic aspects to specialized technological applications. Topics include the application of X-ray and neutron diffraction, infrared and fluorescence spectroscopy, and high-resolution NMR to the understanding of the specific interactions between lipids and proteins within biological membranes, their structural relationships, and the implications for the biological functions that they mediate. Also covered in this volume are the insertion of proteins and peptides into the membrane and the concomitant formation of definite lipid domains within the membrane.