Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Differential Equations, Dynamical Systems, and an Introduction to Chaos
  • Language: en
  • Pages: 433

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.

Celestial Mechanics
  • Language: en
  • Pages: 282

Celestial Mechanics

This volume reflects the proceedings from an international conference on celestial mechanics held at Northwestern University (Evanston, IL) in celebration of Donald Saari's sixtieth birthday. Many leading experts and researchers presented their recent results. Don Saari's significant contribution to the field came in the late 1960s through a series of important works. His work revived the singularity theory in the $n$-body problem which was started by Poincare and Painleve. Saari'ssolution of the Littlewood conjecture, his work on singularities, collision and noncollision, on central configurations, his decompositions of configurational velocities, etc., are still much studied today and were...

Differential Equations and Mathematical Physics
  • Language: en
  • Pages: 517

Differential Equations and Mathematical Physics

  • Type: Book
  • -
  • Published: 2006-11-14
  • -
  • Publisher: Springer

The meeting in Birmingham, Alabama, provided a forum for the discussion of recent developments in the theory of ordinary and partial differential equations, both linear and non-linear, with particular reference to work relating to the equations of mathematical physics. The meeting was attended by about 250 mathematicians from 22 countries. The papers in this volume all involve new research material, with at least outline proofs; some papers also contain survey material. Topics covered include: Schrödinger theory, scattering and inverse scattering, fluid mechanics (including conservative systems and inertial manifold theory attractors), elasticity, non-linear waves, and feedback control theory.

Integrable Systems in Celestial Mechanics
  • Language: en
  • Pages: 241

Integrable Systems in Celestial Mechanics

Shows that exact solutions to the Kepler (two-body), the Euler (two-fixed center), and the Vinti (earth-satellite) problems can all be put in a form that admits the general representation of the orbits and follows a definite shared pattern Includes a full analysis of the planar Euler problem via a clear generalization of the form of the solution in the Kepler case Original insights that have hithertofore not appeared in book form

Central Configurations, Periodic Orbits, and Hamiltonian Systems
  • Language: en
  • Pages: 240

Central Configurations, Periodic Orbits, and Hamiltonian Systems

  • Type: Book
  • -
  • Published: 2015-12-18
  • -
  • Publisher: Birkhäuser

The notes of this book originate from three series of lectures given at the Centre de Recerca Matemàtica (CRM) in Barcelona. The first one is dedicated to the study of periodic solutions of autonomous differential systems in Rn via the Averaging Theory and was delivered by Jaume Llibre. The second one, given by Richard Moeckel, focusses on methods for studying Central Configurations. The last one, by Carles Simó, describes the main mechanisms leading to a fairly global description of the dynamics in conservative systems. The book is directed towards graduate students and researchers interested in dynamical systems, in particular in the conservative case, and aims at facilitating the understanding of dynamics of specific models. The results presented and the tools introduced in this book include a large range of applications.

What's Happening in the Mathematical Sciences
  • Language: en
  • Pages: 108

What's Happening in the Mathematical Sciences

Mathematicians like to point out that mathematics is universal. In spite of this, most people continue to view it as either mundane (balancing a checkbook) or mysterious (cryptography). This fifth volume of the What's Happening series contradicts that view by showing that mathematics is indeed found everywhere-in science, art, history, and our everyday lives. Here is some of what you'll find in this volume: Mathematics and Science Mathematical biology: Mathematics was key tocracking the genetic code. Now, new mathematics is needed to understand the three-dimensional structure of the proteins produced from that code. Celestial mechanics and cosmology: New methods have revealed a multitude of ...

Hamiltonian Dynamical Systems
  • Language: en
  • Pages: 392

Hamiltonian Dynamical Systems

From its origins nearly two centuries ago, Hamiltonian dynamics has grown to embrace the physics of nearly all systems that evolve without dissipation, as well as a number of branches of mathematics, some of which were literally created along the way. This volume contains the proceedings of the International Conference on Hamiltonian Dynamical Systems; its contents reflect the wide scope and increasing influence of Hamiltonian methods, with contributions from a whole spectrum of researchers in mathematics and physics from more than half a dozen countries, as well as several researchers in the history of science. With the inclusion of several historical articles, this volume is not only a slice of state-of-the-art methodology in Hamiltonian dynamics, but also a slice of the bigger picture in which that methodology is imbedded.

Differential Equations - Geometry, Symmetries and Integrability
  • Language: en
  • Pages: 394

Differential Equations - Geometry, Symmetries and Integrability

The Abel Symposium 2008 focused on the modern theory of differential equations and their applications in geometry, mechanics, and mathematical physics. Following the tradition of Monge, Abel and Lie, the scientific program emphasized the role of algebro-geometric methods, which nowadays permeate all mathematical models in natural and engineering sciences. The ideas of invariance and symmetry are of fundamental importance in the geometric approach to differential equations, with a serious impact coming from the area of integrable systems and field theories. This volume consists of original contributions and broad overview lectures of the participants of the Symposium. The papers in this volume present the modern approach to this classical subject.

Collisions, Rings, and Other Newtonian $N$-Body Problems
  • Language: en
  • Pages: 250

Collisions, Rings, and Other Newtonian $N$-Body Problems

The fourth chapter analyzes collisions, while the last chapter discusses the likelihood of collisions and other events."--Jacket.

Featured Reviews in Mathematical Reviews 1997-1999
  • Language: en
  • Pages: 762

Featured Reviews in Mathematical Reviews 1997-1999

This second volume of Featured Reviews makes available special detailed reviews of some of the most important mathematical articles and books published from 1997 through 1999. Also included are excellent reviews of several classic books and articles published prior to 1970. Among those reviews, for example, are the following: Homological Algebra by Henri Cartan and Samuel Eilenberg, reviewed by G. Hochschild; Faisceaux algebriques coherents by Jean-Pierre Serre, reviewed by C. Chevalley; and On the Theory of General Partial Differential Operators by Lars Hormander, reviewed by J. L. Lions. In particular, those seeking information on current developments outside their own area of expertise will find the volume very useful. By identifying some of the best publications, papers, and books that have had or are expected to have a significant impact in applied and pure mathematics, this volume will serve as a comprehensive guide to important new research across all fields covered by MR.