You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Humanity has long been fascinated by the planet Mars. Was its climate ever conducive to life? What is the atmosphere like today and why did it change so dramatically over time? Eleven spacecraft have successfully flown to Mars since the Viking mission of the 1970s and early 1980s. These orbiters, landers and rovers have generated vast amounts of data that now span a Martian decade (roughly eighteen years). This new volume brings together the many new ideas about the atmosphere and climate system that have emerged, including the complex interplay of the volatile and dust cycles, the atmosphere-surface interactions that connect them over time, and the diversity of the planet's environment and its complex history. Including tutorials and explanations of complicated ideas, students, researchers and non-specialists alike are able to use this resource to gain a thorough and up-to-date understanding of this most Earth-like of planetary neighbours.
This is a provocative account of the astounding new answers to the most basic philosophical question: Where did the universe come from and how will it end?
Three recent developments have greatly increased interest in the search for life on Mars. The first is new information about the Martian environment including evidence of a watery past and the possibility of atmospheric methane. The second is the possibility of microbial viability on Mars. Finally, the Vision for Space Exploration initiative included an explicit directive to search for the evidence of life on Mars. These scientific and political developments led NASA to request the NRC's assistance in formulating an up-to-date integrated astrobiology strategy for Mars exploration. Among other topics, this report presents a review of current knowledge about possible life on Mars; an astrobiological assessment of current Mars missions; a review of Mars-mission planetary protection; and findings and recommendations. The report notes that the greatest increase in understanding of Mars will come from the collection and return to Earth of a well-chosen suite of Martian surface materials.
A major surprise of the Apollo Moon missions was the deleterious impact of lunar dust on the astronauts, their spacesuits and other equipment, and even inside the Command/Service Module during their return to Earth. Lunar dust permeated everything and impacted mechanical systems. The dust on the Moon’s surface was disturbed and became airborne by the routine actions of the astronauts as they walked and performed their exploration of the lunar surface. Over the last decade, as NASA’s plans for the human exploration of Mars have developed and matured, a major concern has been the possible negative impacts of Mars surface and atmospheric dust on human health and on the human surface systems...
This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.
The forty-nine papers collected here illuminate the meaning of quantum theory as it is disclosed in the measurement process. Together with an introduction and a supplemental annotated bibliography, they discuss issues that make quantum theory, overarching principle of twentieth-century physics, appear to many to prefigure a new revolution in science. Originally published in 1983. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This volume addresses a new opportunity in the planetary sciencesâ€"to extend our exploration outward to discover and study planetary systems that may have formed or are forming around other stars. It concludes that a coordinated program of astronomical observation, laboratory research, theoretical development, and understanding of the dynamics and origins of whatever may be found would be a technologically feasible and potentially richly rewarding extension of the study of bodies within the solar system.
During 1988, the National Research Council's Space Science Board reorganized itself to more effectively address NASA's advisory needs. The Board's scope was broadened: it was renamed the Space Studies Board and, among other new initiatives, the Committee on Human Exploration was created. The new committee was intended to focus on the scientific aspects of human exploration programs, rather than engineering issues. Their research led to three reports: Scientific Prerequisites for the Human Exploration of Space published in 1993, Scientific Opportunities in the Human Exploration of Space published in 1994, and Science Management in the Human Exploration of Space published in 1997. These three reports are collected and reprinted in this volume in their entirety as originally published.
Presents a clear and detailed guide to a central book of the Fasti, Ovid's account of Rome and its calendar.
Although the Jet Propulsion Laboratory in Pasadena, California, has become synonymous with the United States’ planetary exploration during the past half century, its most recent focus has been on Mars. Beginning in the 1990s and continuing through the Mars Phoenix mission of 2007, JPL led the way in engineering an impressive, rapidly evolving succession of Mars orbiters and landers, including roving robotic vehicles whose successful deployment onto the Martian surface posed some of the most complicated technical problems in space flight history. In Exploration and Engineering, Erik M. Conway reveals how JPL engineers’ creative technological feats led to major breakthroughs in Mars explor...