You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Decompositions of Manifolds
Of all the questions that might be asked about political life, it would be difficult to find one of greater interest than the ancient query: who rules over whom? It appeals powerfully to our curiosity. We want to know who ""runs"" things--who makes policy decisions in New York, Washington, London, or the town in which we live. Is it a single powerful individual, an economic elite, a series of elites, the citizens, political bosses, or some variant of these possibilities?The major purpose of this volume is to find an answer to this question for a small American city, and to extend the answer through relevant theory to American cities in general. But much more precisely, answers are sought for...
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection g...
In this book we study function spaces of low Borel complexity.Techniques from general topology, infinite-dimensional topology, functional analysis and descriptive set theoryare primarily used for the study of these spaces. The mix ofmethods from several disciplines makes the subjectparticularly interesting. Among other things, a complete and self-contained proof of the Dobrowolski-Marciszewski-Mogilski Theorem that all function spaces of low Borel complexity are topologically homeomorphic, is presented. In order to understand what is going on, a solid background ininfinite-dimensional topology is needed. And for that a fair amount of knowledge of dimension theory as well as ANR theory is nee...
This is Part 1 of a two-part volume reflecting the proceedings of the 1993 Georgia International Topology Conference held at the University of Georgia during the month of August. The texts include research and expository articles and problem sets. The conference covered a wide variety of topics in geometric topology. Features: Kirby's problem list, which contains a thorough description of the progress made on each of the problems and includes a very complete bibliography, makes the work useful for specialists and non-specialists who want to learn about the progress made in many areas of topology. This list may serve as a reference work for decades to come. Gabai's problem list, which focuses on foliations and laminations of 3-manifolds, collects for the first time in one paper definitions, results, and problems that may serve as a defining source in the subject area.
This monograph is devoted to the study of the dynamics of expanding Thurston maps under iteration. A Thurston map is a branched covering map on a two-dimensional topological sphere such that each critical point of the map has a finite orbit under iteration. It is called expanding if, roughly speaking, preimages of a fine open cover of the underlying sphere under iterates of the map become finer and finer as the order of the iterate increases. Every expanding Thurston map gives rise to a fractal space, called its visual sphere. Many dynamical properties of the map are encoded in the geometry of this visual sphere. For example, an expanding Thurston map is topologically conjugate to a rational map if and only if its visual sphere is quasisymmetrically equivalent to the Riemann sphere. This relation between dynamics and fractal geometry is the main focus for the investigations in this work. The book is an introduction to the subject. The prerequisites for the reader are modest and include some basic knowledge of complex analysis and topology. The book has an extensive appendix, where background material is reviewed such as orbifolds and branched covering maps.
Richard Stanley's work in combinatorics revolutionized and reshaped the subject. Many of his hallmark ideas and techniques imported from other areas of mathematics have become mainstays in the framework of modern combinatorics. In addition to collecting several of Stanley's most influential papers, this volume also includes his own short reminiscences on his early years, and on his celebrated proof of The Upper Bound Theorem.