You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.
The book is a comprehensive edition which considers the interactions of atoms, ions and molecules with charged particles, photons and laser fields and reflects the present understanding of atomic processes such as electron capture, target and projectile ionisation, photoabsorption and others occurring in most of laboratory and astrophysical plasma sources including many-photon and many-electron processes. The material consists of selected papers written by leading scientists in various fields.
This book reviews the major progress made in the fields of atomic, molecular and optical physics in the last decade. It contains eleven chapters in which contributors have highlighted the major accomplishments made in a given subfield. Each chapter is not a comprehensive review, but rather a succinct survey of the most interesting developments achieved in recent years. This book contains information on many AMO subfields and can be used as a textbook for graduate students interested in entering AMO physics. It may also serve researchers who wish to familiarize themselves with other AMO subfields.
This book is devoted to one of the most active domains of atomic physic- atomic physics of heavy positive ions. During the last 30 years, this terrain has attracted enormous attention from both experimentalists and theoreti cians. On the one hand, this interest is stimulated by rapid progress in the development of laboratory ion sources, storage rings, ion traps and methods for ion cooling. In many laboratories, a considerable number of complex and accurate experiments have been initiated, challenging new frontiers. Highly charged ions are used for investigations related to fundamental research and to more applied fields such as controlled nuclear fusion driven by heavy ions and its diagnost...
Advances in Atomic and Molecular Physics
Although based on lectures given for graduate students and postgraduates starting in plasma physics, this concise introduction to the fundamental processes and tools is as well directed at established researchers who are newcomers to spectroscopy and seek quick access to the diagnostics of plasmas ranging from low- to high-density technical systems at low temperatures, as well as from low- to high-density hot plasmas. Basic ideas and fundamental concepts are introduced as well as typical instrumentation from the X-ray to the infrared spectral regions. Examples, techniques and methods illustrate the possibilities. This book directly addresses the experimentalist who actually has to carry out the experiments and their interpretation. For that reason about half of the book is devoted to experimental problems, the instrumentation, components, detectors and calibration.
The need for long-term energy sources, in particular for our highly technological society, has become increasingly apparent during the last decade. One of these sources, of tremendous poten tial importance, is controlled thermonuclear fusion. The goal of controlled thermonuclear fusion research is to produce a high-temperature, completely ionized plasma in which the nuclei of two hydrogen isotopes, deuterium and tritium, undergo enough fusion reactions so that the nuclear energy released by these fusion reactions can be transformed into heat and electricity with an overall gain in energy. This requires average kinetic energies for the nuclei of the order of 10 keV, corresponding to temperatu...
A variety of plasmas include molecules rather than only ions or atoms. Examples are ionospheres of the Earth and other planets, stellar atmospheres, gaseous discharges for use in various devices and processes, and fusion plasmas in the edge region. This book describes the role of molecules in those plasmas by showing elementary collision processes involving those molecules.
A summary of spectroscopic and collisional atomic data for highly charged positive ions: oscillator strength, energy levels, transition probabilities, cross sections and rate coefficients of different elementary processes taking place in hot plasmas. The data is presented in abbreviated form using tables, figures and, if possible, scaling laws for different characteristics, complete with and ample references to the original literature.
One of the most important issues in the construction of future magnetic confinement fusion machines is that of the materials of which they are constructed, and one of the key points of proper material choice is the recycle of hydrogen isotopes with materials at the plasma face. Tritium machines demand high safety and economy, which in turn requires the lowest possible T inventory and smallest possible permeation through the plasma facing materials. The recycle behaviour of the in-vessel components must also be known if the plasma reaction is to predictable and controllable, and finally, the fuel cycle and plasma operating regimes may be actively controlled by special materials and methods. The book discusses both laboratory experiments exploring the basic properties of non-equilibrium hydrogen-solid systems (diffusion, absorption, boundary processes) and experimental results obtained from existing fusion machines under conditions simulating future situations to some extent. Contributions are from experts in the fields of nuclear fusion, materials science, surface science, vacuum science and technology, and solid state physics.