You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents key advances in the modeling of reinforcement corrosion and concrete durability. It also examines various further aspects of reinforcement corrosion and concrete durability, striking a balance between modeling and testing. Particular attention is paid to innovative treatments for avoiding deterioration, and to methods for modeling performance in a real environment. Some basic aspects related to non-destructive testing techniques are also discussed. Deterioration-related topics addressed in the book include the basis for modeling alkali-silica reactions, chloride diffusion and the development of concrete microstructure; measurement-related topics include cathodic protection, polarization resistance and resistivity. A combined approach using the AFM technique and polarization measurements is examined, and the relation between cracking and corrosion and the treatment of concrete with hydrophobes or innovative products such as hydrotalcite is also discussed.
In this book, a critical analysis is made on service life models related to reinforcement corrosion. The contributors are on the frontier of knowledge in the field of durability of reinforced concrete. Topics covered in the book include: causes and mechanisms of deterioration, transport mechanisms in concrete, numerical modeling of concrete behavior, durability modeling and prediction, reliability approach to structural design for durability, structural behavior following degradation of concrete structures, deterioration and repair of concrete structures, and corrosion measurement techniques.
Steel-reinforced concrete is used ubiquitously as a building material due to its unique combination of the high compressive strength of concrete and the high tensile strength of steel. Therefore, reinforced concrete is an ideal composite material that is used for a wide range of applications in structural engineering such as buildings, bridges, tunnels, harbor quays, foundations, tanks and pipes. To ensure durability of these structures, however, measures must be taken to prevent, diagnose and, if necessary, repair damage to the material especially due to corrosion of the steel reinforcement. The book examines the different aspects of corrosion of steel in concrete, starting from basic and e...
Concrete is an inherently complex material to produce and an even more complex material to repair. With growing pressure to maintain the built environment, and not simply to demolish and rebuild, the need to repair concrete buildings and other structures is increasing and is expected to become of greater importance in the future.This straightforwar
This work gives an overview of significant research from recent years concerning performance-based design and quality control for concrete durability and its implementation. In engineering practice, performance approaches are often still used in combination with prescriptive requirements. This is largely because, for most durability test methods, sufficient practical experience still has to be gained before engineers and owners are prepared to fully rely on them. This book, compiled by RILEM TC 230-PSC, is intended to assist efforts to successfully build the foundation for the full implementation of performance-based approaches through the exchange of relevant knowledge and experience between researchers and practitioners worldwide.
This book gives information on non destructive techniques for assessment of concrete structures. It synthesizes the best of international knowledge about what techniques can be used for assessing material properties (strength) and structural properties (geometry, defects...). It describes how the techniques can be used so as to answer a series of usual questions, highlighting their capabilities and limits, and providing advices for a better use of techniques. It also focuses on possible combinations of techniques so as to improve the assessment. It is based on many illustrative examples and give in each case references to standards and guidelines.
None
Chloride ingress in reinforced concrete induces corrosion and consequent spilling and structural weakness, and it occurs world-wide and imposes an enormous cost. Yet it can be resisted by using test methods and relevant models for service life prediction.Resistance of Concrete to Chloride Ingress sets out current understanding of chloride transport