You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Imaging modalities in radiology produce ever-increasing amounts of data which need to be displayed, optimized, analyzed and archived: a "big data" as well as an "image processing" problem. Computer programming skills are rarely emphasized during the education and training of medical physicists, meaning that many individuals enter the workplace without the ability to efficiently solve many real-world clinical problems. This book provides a foundation for the teaching and learning of programming for medical physicists and other professions in the field of Radiology and offers valuable content for novices and more experienced readers alike. It focuses on providing readers with practical skills ...
This book covers scientific, clinical, and educational aspects of radiotheranostics in cancer control. Setting the framework, the first volume defines radiotheranostics and describes the history of radionuclide therapy and theranostics, and the biology of cancer. It examines the clinical applications of unconjugated radionuclides, such as 131I and 223Ra, and of radionuclide-conjugated cancer-specific vectors: peptides, small molecules, antibodies, and nanoparticles; introduces clinical trials and drug development; and reviews epidemiological studies and the adverse effects of radionuclide therapy – both radiation injuries and chemical toxicity. It presents the chemistry and physics of radi...
This textbook provides an accessible introduction to the basic principles of medical physics, the applications of medical physics equipment, and the role of a medical physicist in healthcare. Introduction to Medical Physics is designed to support undergraduate and graduate students taking their first modules on a medical physics course, or as a dedicated book for specific modules such as medical imaging and radiotherapy. It is ideally suited for new teaching schemes such as Modernising Scientific Careers and will be invaluable for all medical physics students worldwide. Key features: Written by an experienced and senior team of medical physicists from highly respected institutions The first book written specifically to introduce medical physics to undergraduate and graduate physics students Provides worked examples relevant to actual clinical situations
This state-of-the-art handbook, the first in a series that provides medical physicists with a comprehensive overview into the field of nuclear medicine, is dedicated to instrumentation and imaging procedures in nuclear medicine. It provides a thorough treatment on the cutting-edge technologies being used within the field, in addition to touching upon the history of their use, their development, and looking ahead to future prospects. This text will be an invaluable resource for libraries, institutions, and clinical and academic medical physicists searching for a complete account of what defines nuclear medicine. The most comprehensive reference available providing a state-of-the-art overview of the field of nuclear medicine Edited by a leader in the field, with contributions from a team of experienced medical physicists Includes the latest practical research in the field, in addition to explaining fundamental theory and the field's history
Covering the latest cutting-edge techniques in biomedical signal processing while presenting a coherent treatment of various signal processing methods and applications, this second edition of Practical Biomedical Signal Analysis Using MATLAB® also offers practical guidance on which procedures are appropriate for a given task and different types of data. It begins by describing signal analysis techniques—including the newest and most advanced methods in the field—in an easy and accessible way, illustrating them with Live Script demos. MATLAB® routines are listed when available, and freely available software is discussed where appropriate. The book concludes by exploring the applications...
This book provides a clinical insight into image-guided radiation therapy (IGRT) for prostate cancer. It starts by setting the clinical scene, discussing immobilisation and standard IGRT practice and then considering important developments like IGRT with non-ionising radiation, adaptive radiotherapy, particle therapy, margins, hypofractionation, clinical outcomes, AI and training. Good IGRT requires both technical and clinical focus. So, in complement to our first study guide on IGRT, this book now brings together key, clinical insights into IGRT for Prostate Cancer patients, with a view to helping the professional learn more about ‘how-to’ undertake IGRT for these patients more accurate...
This book explores the current difficulties and unsolved problems in the field of particle therapy and, after analysing them, discusses how (and if) innovative Monte Carlo approaches can be used to solve them. Each book chapter is dedicated to a different sub-discipline, including multi-ion treatments, flash-radiotherapy, laser-accelerated beams, nanoparticles effects, binary reactions to enhance radiobiology, and space-related issues. This is the first book able to provide a comprehensive insight into this exciting field and the growing use of Monte Carlo in medical physics. It will be of interest to graduate students in medicine and medical physics, in addition to researchers and clinical staff. Key Features: Explores the exciting and interdisciplinary topic of Monte Carlo in particle therapy and medicine Addresses common challenges in the field Edited by an authority on the subject, with chapter contributions from specialists
X-ray computed tomography (CT) has been one of the most popular diagnostic imaging modalities for decades in the clinic for saving patients’ lives or improving their quality of life. This book is an introductory one-stop shop for technological and clinical topics in multi-detector computed tomography (MDCT). Starting with MDCT’s fundamentals in physics and mathematics, the book provides an in-depth introduction to its system architecture and imaging chain, signal detection via energy-integration and photon-counting mechanisms, clinical application-driven scan modes and protocols, analytic and iterative image reconstruction solutions, and spectral imaging – the latest technological adva...
With contributions from leading international researchers, this second edition of Electrical Impedance Tomography: Methods, History and Applications has been fully updated throughout and contains new developments in the field, including sections on image interpretation and image reconstruction. Providing a thorough review of the progress of EIT, the present state of knowledge, and a look at future advances and applications, this accessible reference will be invaluable for mathematicians, physicists dealing with bioimpedance, electronic engineers involved in developing and extending its applications, and clinicians wishing to take advantage of this powerful imaging method. Key Features: Fully updated throughout, with new sections on image interpretation and image reconstruction Overview of the current state of experimental and clinical use of EIT as well as active research developments Overview of related research in geophysics, industrial process tomography, magnetic-resonance and magnetic-induction impedance imaging
None