You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this book, the ``canard phenomenon'' occurring in Van der Pol's equation $\epsilon \ddot x+(x^2+x)\dot x+x-a=0$ is studied. For sufficiently small $\epsilon >0$ and for decreasing $a$, the limit cycle created in a Hopf bifurcation at $a = 0$ stays of ``small size'' for a while before it very rapidly changes to ``big size'', representing the typical relaxation oscillation. The authors give a geometric explanation and proof of this phenomenon using foliations by center manifolds and blow-up of unfoldings as essential techniques. The method is general enough to be useful in the study of other singular perturbation problems.
None
This development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properties and arise in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired in most undergraduate courses in mathematics, Dr. Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis.
This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs. In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the ...
Vols. for 1975- include publications cataloged by the Research Libraries of the New York Public Library with additional entries from the Library of Congress MARC tapes.