You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The 10th IAPTC&B Congress, Plant Biotechnology 2002 and Beyond, was held June 23-28, 2002, at Disney's Coronado Springs Resort, in Orlando, Florida, USA. It was attended by 1,176 scientists from 54 countries. The best and brightest stars of international plant biotechnology headlined the scientific program. It included the opening address by the President of the IAPTC&B, 14 plenary lectures, and 111 keynote lectures and contributed papers presented in 17 symposia covering all aspects of plant biotechnology. More than 500 posters supplemented the formal program. The distinguished speakers described, discussed and debated not only the best of science that has been done or is being done, but al...
International Review of Cytology
The relationship of Christianity to science can best be handled by isolating images of science that influence Christianity. Henry defines and then reformulates those images, making science more intelligible and Christianity more biblical.
Environmental stresses represent the most limiting factors for agricultural productivity worldwide. These stresses impact not only current crop species, they are also significant barriers to the introduction of crop plants into areas that are not currently being used for agriculture. Stresses associated with temperature, salinity and drought, singly or in combination, are likely to enhance the severity of problems to which plants will be exposed in the coming decades. The present book brings together contributions from many laboratories around the world to discuss and compare our current knowledge of the role stress genes play in plant stress tolerance. In addition, strategies are discussed to introduce these genes and the processes that they encode into economically important crops, and the effect this will have on plant productivity.
Tropisms, the defined vectorial stimuli, such as gravity, light, touch, humidity gradients, ions, oxygen, and temperature, which provide guidance for plant organ growth, is a rapidly growing and changing field. The last few years have witnessed a true renaissance in the analysis of tropisms. As such the conception of tropisms has changed from being seen as a group of simple laboratory curiosities to their recognition as important tools/phenotypes with which to decipher basic cell biological processes that are essential to plant growth and development. Plant Tropisms will provide a comprehensive, yet integrated volume of the current state of knowledge on the molecular and cell biological processes that govern plant tropisms.
During the past ten years, great advances have been made in the area of plant molecular biology. Such formerly esoteric techniques as gene transfer and plant regeneration are now routinely performed, making the dissection of regulatory elements of genes a common practice in many laboratories. Along with this new technology has come an almost bewildering array of rapidly changing techniques, often making it difficult for the novice to select and perform the technique most appropriate for answering a given biological question. In 1986, some of us felt that many of these techniques had become routine enough to warrant the publication of a laboratory manual. The manual is designed both for advan...
Methods in Plant Cell Biology provides in two volumes a comprehensive collection of analytical methods essential for researchers and students in the plant sciences. Individual chapters, written by experts in the field, provide an introductory overview, followed by a step-by-step technical description of the methods. Key Features * Written by experts, many of whom have developed the individual methods described * Contains most, if not all, the methods needed for modern research in plant cell biology * Up-to-date and comprehensive * Full references * Allows quick access to relevant journal articles and to the sources of chemicals required for the procedures * Selective concentration on higher plant methods allows for particular emphasis on those problems specific to plants.
Even if you studied biotechnology in school, if you haven't stayed current, it's not likely you'll be able to speak the same language as today's biotech scientists. The same is even truer for nanotechnology where everything gets smaller and smaller, except the terminology required to navigate it. In the Glossary of Biotechnology and Nanobiotechnology Terms, Fourth Edition, Kimball Nill continues to improve upon the reference that for over a decade has helped thousands of professionals, including scientists, attorneys, government workers, lobbyists, venture capitalists, and university tech transfer staff, to communicate successfully with those working on the cutting edge of modern science. No...