Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Frontiers in Geometry and Topology
  • Language: en
  • Pages: 320

Frontiers in Geometry and Topology

This volume contains the proceedings of the summer school and research conference “Frontiers in Geometry and Topology”, celebrating the sixtieth birthday of Tomasz Mrowka, which was held from August 1–12, 2022, at the Abdus Salam International Centre for Theoretical Physics (ICTP). The summer school featured ten lecturers and the research conference featured twenty-three speakers covering a range of topics. A common thread, reflecting Mrowka's own work, was the rich interplay among the fields of analysis, geometry, and topology. Articles in this volume cover topics including knot theory; the topology of three and four-dimensional manifolds; instanton, monopole, and Heegaard Floer homologies; Khovanov homology; and pseudoholomorphic curve theory.

Cluster Algebras and Triangulated Surfaces Part II: Lambda Lengths
  • Language: en
  • Pages: 110

Cluster Algebras and Triangulated Surfaces Part II: Lambda Lengths

For any cluster algebra whose underlying combinatorial data can be encoded by a bordered surface with marked points, the authors construct a geometric realization in terms of suitable decorated Teichmüller space of the surface. On the geometric side, this requires opening the surface at each interior marked point into an additional geodesic boundary component. On the algebraic side, it relies on the notion of a non-normalized cluster algebra and the machinery of tropical lambda lengths. The authors' model allows for an arbitrary choice of coefficients which translates into a choice of a family of integral laminations on the surface. It provides an intrinsic interpretation of cluster variables as renormalized lambda lengths of arcs on the surface. Exchange relations are written in terms of the shear coordinates of the laminations and are interpreted as generalized Ptolemy relations for lambda lengths. This approach gives alternative proofs for the main structural results from the authors' previous paper, removing unnecessary assumptions on the surface.

An Elementary Recursive Bound for Effective Positivstellensatz and Hilbert’s 17th Problem
  • Language: en
  • Pages: 138

An Elementary Recursive Bound for Effective Positivstellensatz and Hilbert’s 17th Problem

The authors prove an elementary recursive bound on the degrees for Hilbert's 17th problem. More precisely they express a nonnegative polynomial as a sum of squares of rational functions and obtain as degree estimates for the numerators and denominators the following tower of five exponentials 222d4k where d is the number of variables of the input polynomial. The authors' method is based on the proof of an elementary recursive bound on the degrees for Stengle's Positivstellensatz. More precisely the authors give an algebraic certificate of the emptyness of the realization of a system of sign conditions and obtain as degree bounds for this certificate a tower of five exponentials, namely 22(2max{2,d}4k+s2kmax{2,d}16kbit(d)) where d is a bound on the degrees, s is the number of polynomials and k is the number of variables of the input polynomials.

On the Geometric Side of the Arthur Trace Formula for the Symplectic Group of Rank 2
  • Language: en
  • Pages: 100

On the Geometric Side of the Arthur Trace Formula for the Symplectic Group of Rank 2

The authors study the non-semisimple terms in the geometric side of the Arthur trace formula for the split symplectic similitude group and the split symplectic group of rank over any algebraic number field. In particular, they express the global coefficients of unipotent orbital integrals in terms of Dedekind zeta functions, Hecke -functions, and the Shintani zeta function for the space of binary quadratic forms.

Covering Dimension of C*-Algebras and 2-Coloured Classification
  • Language: en
  • Pages: 112

Covering Dimension of C*-Algebras and 2-Coloured Classification

The authors introduce the concept of finitely coloured equivalence for unital -homomorphisms between -algebras, for which unitary equivalence is the -coloured case. They use this notion to classify -homomorphisms from separable, unital, nuclear -algebras into ultrapowers of simple, unital, nuclear, -stable -algebras with compact extremal trace space up to -coloured equivalence by their behaviour on traces; this is based on a -coloured classification theorem for certain order zero maps, also in terms of tracial data. As an application the authors calculate the nuclear dimension of non-AF, simple, separable, unital, nuclear, -stable -algebras with compact extremal trace space: it is 1. In the case that the extremal trace space also has finite topological covering dimension, this confirms the remaining open implication of the Toms-Winter conjecture. Inspired by homotopy-rigidity theorems in geometry and topology, the authors derive a “homotopy equivalence implies isomorphism” result for large classes of -algebras with finite nuclear dimension.

New Perspectives and Challenges in Symplectic Field Theory
  • Language: en
  • Pages: 355

New Perspectives and Challenges in Symplectic Field Theory

This volume, in honor of Yakov Eliashberg, gives a panorama of some of the most fascinating recent developments in symplectic, contact and gauge theories. It contains research papers aimed at experts, as well as a series of skillfully written surveys accessible for a broad geometrically oriented readership from the graduate level onwards. This collection will serve as an enduring source of information and ideas for those who want to enter this exciting area as well as for experts.

Categorification in Geometry, Topology, and Physics
  • Language: en
  • Pages: 282

Categorification in Geometry, Topology, and Physics

The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorification is a powerful tool for relating various branches of mathematics and exploiting the commonalities between fields. It provides a language emphasizing essential features and allowing precise relationships between vastly different fields. This volume focuses on the role categorification plays in geometry, topology, and physics. These articles illustrate many important trends for the field including geometric representation theory, homotopical methods in link homology, interactions between higher representation theory and gauge theory, and double affine Hecke algebra approaches to link homology. The companion volume (Contemporary Mathematics, Volume 683) is devoted to categorification and higher representation theory.

Singularities and Low Dimensional Topology
  • Language: en
  • Pages: 230

Singularities and Low Dimensional Topology

None

Contact and Symplectic Topology
  • Language: en
  • Pages: 538

Contact and Symplectic Topology

Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.