You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book studies the modules arising in Fourier expansions of automorphic forms, namely Fourier term modules on SU(2,1), the smallest rank one Lie group with a non-abelian unipotent subgroup. It considers the “abelian” Fourier term modules connected to characters of the maximal unipotent subgroups of SU(2,1), and also the “non-abelian” modules, described via theta functions. A complete description of the submodule structure of all Fourier term modules is given, with a discussion of the consequences for Fourier expansions of automorphic forms, automorphic forms with exponential growth included. These results can be applied to prove a completeness result for Poincaré series in spaces of square integrable automorphic forms. Aimed at researchers and graduate students interested in automorphic forms, harmonic analysis on Lie groups, and number-theoretic topics related to Poincaré series, the book will also serve as a basic reference on spectral expansion with Fourier-Jacobi coefficients. Only a background in Lie groups and their representations is assumed.
This memoir is a refinement of the author's PhD thesis -- written at Cornell University (2006). It is primarily a desription of new research but also includes a substantial amount of background material. At the heart of the memoir the author introduces and studies a poset $NC^{(k)}(W)$ for each finite Coxeter group $W$ and each positive integer $k$. When $k=1$, his definition coincides with the generalized noncrossing partitions introduced by Brady and Watt in $K(\pi, 1)$'s for Artin groups of finite type and Bessis in The dual braid monoid. When $W$ is the symmetric group, the author obtains the poset of classical $k$-divisible noncrossing partitions, first studied by Edelman in Chain enumeration and non-crossing partitions.
In this article the author describes in detail a compactification of the moduli schemes representing Drinfeld modules of rank 2 endowed with some level structure. The boundary is a union of copies of moduli schemes for Drinfeld modules of rank 1, and its points are interpreted as Tate data. The author also studies infinitesimal deformations of Drinfeld modules with level structure.
In ``The Yang-Mills equations over Riemann surfaces'', Atiyah and Bott studied Yang-Mills functional over a Riemann surface from the point of view of Morse theory. In ``Yang-Mills Connections on Nonorientable Surfaces'', the authors study Yang-Mills functional on the space of connections on a principal $G_{\mathbb{R}}$-bundle over a closed, connected, nonorientable surface, where $G_{\mathbb{R}}$ is any compact connected Lie group. In this monograph, the authors generalize the discussion in ``The Yang-Mills equations over Riemann surfaces'' and ``Yang-Mills Connections on Nonorientable Surfaces''. They obtain explicit descriptions of equivariant Morse stratification of Yang-Mills functional on orientable and nonorientable surfaces for non-unitary classical groups $SO(n)$ and $Sp(n)$.
Contains the proof of a noncommutative analogue of the inequality for sums of free random variables over a given von Neumann subalgebra.
Addresses the classical problem of determining finite primitive permutation groups G with a regular subgroup B.
"Volume 203, number 954 (third of 5 numbers)."
Cartan introduced the method of prolongation which can be applied either to manifolds with distributions (Pfaffian systems) or integral curves to these distributions. Repeated application of prolongation to the plane endowed with its tangent bundle yields the Monster tower, a sequence of manifolds, each a circle bundle over the previous one, each endowed with a rank $2$ distribution. In an earlier paper (2001), the authors proved that the problem of classifying points in the Monster tower up to symmetry is the same as the problem of classifying Goursat distribution flags up to local diffeomorphism. The first level of the Monster tower is a three-dimensional contact manifold and its integral curves are Legendrian curves. The philosophy driving the current work is that all questions regarding the Monster tower (and hence regarding Goursat distribution germs) can be reduced to problems regarding Legendrian curve singularities.
The authors prove a general form of the sum formula $\mathrm{SL}_2$ over a totally real number field. This formula relates sums of Kloosterman sums to products of Fourier coefficients of automorphic representations. The authors give two versions: the spectral sum formula (in short: sum formula) and the Kloosterman sum formula. They have the independent test function in the spectral term, in the sum of Kloosterman sums, respectively.
This volume is an outgrowth of the Sixth Workshop on Lie Theory and Geometry, held in the province of Cordoba, Argentina in November 2007. The representation theory and structure theory of Lie groups play a pervasive role throughout mathematics and physics. Lie groups are tightly intertwined with geometry and each stimulates developments in the other. The aim of this volume is to bring to a larger audience the mutually beneficial interaction between Lie theorists and geometers that animated the workshop. Two prominent themes of the representation theoretic articles are Gelfand pairs and the representation theory of real reductive Lie groups. Among the more geometric articles are an exposition of major recent developments on noncompact homogeneous Einstein manifolds and aspects of inverse spectral geometry presented in settings accessible to readers new to the area.