You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
After an introductory overview of the principles and applications of structure-based methods in drug discovery, the essential features of the various methods are explored. Chapters on X-ray crystallography, NMR spectroscopy, computational chemistry and molecular modelling describe how these particular techniques have been enhanced to support rational drug discovery, with discussions on developments such as high-throughput structure determination, probing protein-ligand interactions by NMR spectroscopy, virtual screening, ad fragment-based drug discovery. The concluding chapters complement the overview of methods by presenting case histories which demonstrate the major impact that structure-based methods have had on the drug discovery process.
Completely revised and updated, the 2nd edition of The Handbook of Medicinal Chemistry draws together contributions from authoritative practitioners to provide a comprehensive overview of the field as well as insight into the latest trends and research. An ideal companion for students in medicinal chemistry, drug discovery and drug development, while also communicating core principles, the book places the discipline within the context of the burgeoning platform of new modalities now available to drug discovery. The book also highlights the role chemistry has to play in wider target validation and translational technologies. This is a carefully curated compilation of writing from global experts using their broad experience of medicinal chemistry, project leadership and drug discovery and development from an industry, academic and charity perspective to provide unparalleled insight into the field.
Structure-based drug discovery is a collection of methods that exploits the ability to determine and analyse the three dimensional structure of biological molecules. These methods have been adopted and enhanced to improve the speed and quality of discovery of new drug candidates. After an introductory overview of the principles and application of structure-based methods in drug discovery, this book then describes the essential features of the various methods. Chapters on X-ray crystallography, NMR spectroscopy, and computational chemistry and molecular modelling describe how these particular techniques have been enhanced to support rational drug discovery, with discussions on developments su...
Introduction to Fragment-Based Drug Discovery, by Daniel A. Erlanson Fragment Screening Using X-Ray Crystallography, by Thomas G. Davies and Ian J. Tickle Hsp90 Inhibitors and Drugs from Fragment and Virtual Screening, by Stephen Roughley, Lisa Wright, Paul Brough, Andrew Massey and Roderick E. Hubbard Combining NMR and X-ray Crystallography in Fragment-Based Drug Discovery: Discovery of Highly Potent and Selective BACE-1 Inhibitors, by Daniel F. Wyss, Yu-Sen Wang, Hugh L. Eaton, Corey Strickland, Johannes H. Voigt, Zhaoning Zhu and Andrew W. Stamford Combining Biophysical Screening and X-Ray Crystallography for Fragment-Based Drug Discovery, by Michael Hennig, Armin Ruf and Walter Huber Targeting Protein–Protein Interactions and Fragment-Based Drug Discovery, by Eugene Valkov, Tim Sharpe, May Marsh, Sandra Greive and Marko Hyvönen Fragment Screening and HIV Therapeutics, by Joseph D. Bauman, Disha Patel and Eddy Arnold Fragment-Based Approaches and Computer-Aided Drug Discovery, by Didier Rognan
The molecular modeling perspective in drug design. (N. Calude Cohen). Molecular graphics and modeling: tools of the trade. (Roderick E. Hubbard). Molecular modeling of small molecules. (Tamara Gund). Computer assisted new lead design. (Akiko Itai, Miho Yamada Mizutani, Yoshihiko Nishibata, and Nubuo Tomioka). Experimental techniques and data banks. (John P. Priestle and C. Gregory Paris). Computer-assisted drug discovery. (Peter Gund, Gerald Maggiora, and James P. Snyder). Modeling drug-receptor interactions. (Konrad F. Koehler, Shashidhar N. Rao, and James P. Snyder). Glossary of terminology. (J. P. Tollenaere).
Protein folding and aggregation is the process by which newly synthesized proteins fold into the specific three-dimensional structures defining their biologically active states. It has always been a major focus of research in biochemistry and has often been seen as the unsolved second part of the genetic code. In the last 10 years we have witnessed a quantum leap in the research in this exciting area. Computational methods have improved to the extent of making possible to simulate the complete folding process of small proteins and the early stages of protein aggregation. Experimental methods h.
There are numerous excellent reviews on fragment-based drug discovery (FBDD), but there are to date no hand-holding guides or protocols with which one can embark on this orthogonal approach to complement traditional high throughput screening methodologies. This Methods in Enzymology volume offers the tools, practical approaches, and hit-to-lead examples on how to conduct FBDD screens. The chapters in this volume cover methods that have proven to be successful in generating leads from fragments, including chapters on how to apply computational techniques, nuclear magnetic resonance, surface plasma resonance, thermal shift and binding assays, protein crystallography, and medicinal chemistry in...
From its origins as a niche technique more than 15 years ago, fragment-based approaches have become a major tool for drug and ligand discovery, often yielding results where other methods have failed. Written by the pioneers in the field, this book provides a comprehensive overview of current methods and applications of fragment-based discovery, as well as an outlook on where the field is headed. The first part discusses basic considerations of when to use fragment-based methods, how to select targets, and how to build libraries in the chemical fragment space. The second part describes established, novel and emerging methods for fragment screening, including empirical as well as computational approaches. Special cases of fragment-based screening, e. g. for complex target systems and for covalent inhibitors are also discussed. The third part presents several case studies from recent and on-going drug discovery projects for a variety of target classes, from kinases and phosphatases to targeting protein-protein interaction and epigenetic targets.
With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major...
This text provides a comprehensive summary of where natural product chemistry is today in drug discovery. It covers emerging technologies and case studies and is a source of up-to-date information on the topical subject of natural products.