You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.
Tremendous research is taking place to make photoelectrochemical (PEC) water splitting technology a reality. Development of high performance PEC systems requires an understanding of the theory to design novel materials with attractive band gaps and stability. Focusing on theory and systems analysis, Advances in Photoelectrochemical Water Splitting provides an up-to-date review of this exciting research landscape. The book starts by addressing the challenges of water splitting followed by chapters on the theoretical design of PEC materials and their computational screening. The book then explores advances in identifying reaction intermediates in PEC materials as well as developments in solution processed photoelectrodes, photocatalyst sheets, and bipolar membranes. The final part of the book focuses on systems analysis, which lays out a roadmap of where researchers hope the fundamental research will lead us. Edited by world experts in the field of solar fuels, the book provides a comprehensive overview of photoelectrochemical water splitting, from theoretical aspects to systems analysis, for the energy research community.
This book provides an up-to-date review of the status and prospects of different options in energy conversion and storage technologies, as seen by a panel of world leading experts. It offers a platform for readers engaged in planning and undertaking new energy solutions, or retrofitting and redesigning the existing installations, to confront and to compare the pros and cons of various novel technology options. This book presents state-of-the-art papers on a timely topic.
Electrochemical surface science (EC-SS) is the natural advancement of traditional surface science (where gas–vacuum/solid interfaces are studied) to liquid (solution)/electrified solid interfaces. Such a merging between two different disciplines—i.e., surface science (SS) and electrochemistry—officially advanced ca. three decades ago. The main characteristic of EC-SS versus electrochemistry is the reductionist approach undertaken, inherited from SS and aiming to understand the microscopic processes occurring at electrodes on the atomic level. A few of the exemplary keystone tools of EC-SS include EC-scanning probe microscopies, operando and in situ spectroscopies and electron microscop...
This book explores the conversion for solar energy into renewable liquid fuels through electrochemical reactions. The first section of the book is devoted to the theoretical fundamentals of solar fuels production, focusing on the surface properties of semiconductor materials in contact with aqueous solutions and the reaction mechanisms. The second section describes a collection of current, relevant characterization techniques, which provide essential information of the band structure of the semiconductors and carrier dynamics at the interface semiconductor. The third, and last section comprises the most recent developments in materials and engineered structures to optimize the performance of solar-to-fuel conversion devices.
Investigative tools for analyzing environmental nanoparticles with health impactsBasic theories and models of life cycle analysis applied to nanomaterialsConnects LCA, detection technologies and sustainability This book addresses the ways life cycle assessment (LCA) concepts can be applied to analyze the fate of nanoparticles in a variety of environmental and manufacturing settings. After introducing LCA theory and modeling concepts, the work discusses risks associated with carbon nanotubes, graphene, silver, fullerenes, iron oxides and other particles generated by manufacturing or medical diagnostics. Chapters in the text discuss biomolecules and the application of in vivo biosensors. Also covered are fate analysis, risk assessment, toxicology and nanopathology with a focus on human health and disease.
We are facing a global energy crisis caused by world population growth, an escalating increase in demand, and continued dependence on fossil-based fuels for generation. It is widely accepted that increases in greenhouse gas concentration levels, if not reversed, will result in major changes to world climate with consequential effects on our society and economy. This is just the kind of intractable problem that Purdue University's Global Policy Research Institute seeks to address in the Purdue Studies in Public Policy series by promoting the engagement between policy makers and experts in fields such as engineering and technology. Major steps forward in the development and use of technology a...
This book describes the critical areas of research and development towards viable integrated solar fuels systems, the current state of the art of these efforts and outlines future research needs.
Electrochemistry theme is a component of Encyclopedia of Physical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Electrochemistry is the science that studies the properties and chemical transformations of/within ionic conductors (most commonly a solution of a salt) and at the interface between an ionic conductor and an electronic conductor (most commonly a metal) or semiconductor. Electrochemistry is present in many aspects of our everyday life. Probably, batteries are the most common example. However, electrochemistry is also present in many other aspects of vital importance in the chemical industry, like chlorine, caustic soda and aluminum (and many others not described here) are produced through electrochemical processes. This volume is aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs