You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
There are strong connections between harmonic analysis and ergodic theory. A recent example of this interaction is the proof of the spectacular result by Terence Tao and Ben Green that the set of prime numbers contains arbitrarily long arithmetic progressions. This text presents a series of essays on the topic.
This volume contains the proceedings of the virtual AMS Special Session on Harmonic Analysis, held from March 26–27, 2022. Harmonic analysis has gone through rapid developments in the past decade. New tools, including multilinear Kakeya inequalities, broad-narrow analysis, polynomial methods, decoupling inequalities, and refined Strichartz inequalities, are playing a crucial role in resolving problems that were previously considered out of reach. A large number of important works in connection with geometric measure theory, analytic number theory, partial differential equations, several complex variables, etc., have appeared in the last few years. This book collects some examples of this work.
Alberto Calderon was one of the leading mathematicians of the twentieth century. His fundamental, pioneering work reshaped the landscape of mathematical analysis. This volume presents a wide selection from some of Calderon's most influential papers. They range from singular integrals to partial differential equations, from interpolation theory to Cauchy integrals on Lipschitz curves, from inverse problems to ergodic theory. The depth, originality, and historical impact of these works are vividly illustrated by the accompanying commentaries by some of today's leading figures in analysis. In addition, two biographical chapters preface the volume. They discuss Alberto Calderon's early life and his mathematical career.