You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the first attempt at a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics. Other areas of science and technology are included where appropriate. The relation between infinite and finite dimensional systems is presented from a synthetic viewpoint and equations considered include reaction-diffusion, Navier-Stokes and other fluid mechanics equations, magnetohydrodynamics, thermohydraulics, pattern formation, Ginzburg-Landau, damped wave and an introduction to inertial manifolds.
Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.
Originally published in 1977, the book is devoted to the theory and numerical analysis of the Navier-Stokes equations for viscous incompressible fluid. On the theoretical side, results related to the existence, the uniqueness, and, in some cases, the regularity of solutions are presented. On the numerical side, various approaches to the approximation of Navier-Stokes problems by discretization are considered, such as the finite dereference method, the finite element method, and the fractional steps method. The problems of stability and convergence for numerical methods are treated as completely as possible. The new material in the present book (as compared to the preceding 1984 edition) is a...
Singular perturbations occur when a small coefficient affects the highest order derivatives in a system of partial differential equations. From the physical point of view singular perturbations generate in the system under consideration thin layers located often but not always at the boundary of the domains that are called boundary layers or internal layers if the layer is located inside the domain. Important physical phenomena occur in boundary layers. The most common boundary layers appear in fluid mechanics, e.g., the flow of air around an airfoil or a whole airplane, or the flow of air around a car. Also in many instances in geophysical fluid mechanics, like the interface of air and eart...
This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.
1. Mathematical models governing fluid flows stability. 1.1. General mathematical models of thermodynamics. 1.2. Classical mathematical models in thermodynamics of fluids. 1.3. Classical mathematical models in thermodynamics. 1.4. Classical perturbation models. 1.5. Generalized incompressible Navier-Stokes model -- 2. Incompressible Navier-Stokes fluid. 2.1. Back to integral setting; involvement of dynamics and bifurcation. 2.2. Stability in semidynamical systems. 2.3. Perturbations; asymptotic stability; linear stability. 2.4. Linear stability. 2.5. Prodi's linearization principle. 2.6. Estimates for the spectrum of Ã. 2.7. Universal stability criteria -- 3. Elements of calculus of variati...
This volume contains invited lectures and contributed papers presented at the NATO Advanced Research Workshop on Mathematical Modeling in Combustion and related topics, held in. Lyon (France), April 27 - 30, 1987. This conference was planned to fit in with the two-month visit of Professor G.S.S. Ludford to the Ecole Centrale de Lyon. He kindly agreed to chair the Scientific and Organizing Committee and actively helped to initiate the meeting. His death in December 1986 is an enormous loss to the scientific community in general, and in particular, to the people involved in the present enterprise. The subject of mathematical modeling in combustion is too large for a single conference, and the ...
This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming acces...
A discussion of developments in the field of bifurcation theory, with emphasis on symmetry breaking and its interrelationship with singularity theory. The notions of universal solutions, symmetry breaking, and unfolding of singularities are discussed in detail. The book not only reviews recent mathematical developments but also provides a stimulus for further research in the field.