You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
These proceedings collect the major part of the lectures given at ENU MATH2003, the European Conference on Numerical Mathematics and Ad vanced Applications, held in Prague, Czech Republic, from 18 August to 22 August, 2003. The importance of numerical and computational mathematics and sci entific computing is permanently growing. There is an increasing number of different research areas, where numerical simulation is necessary. Let us men tion fluid dynamics, continuum mechanics, electromagnetism, phase transi tion, cosmology, medicine, economics, finance, etc. The success of applications of numerical methods is conditioned by changing its basic instruments and looking for new appropriate te...
Finite volume methods are used for various applications in fluid dynamics, magnetohydrodynamics, structural analysis or nuclear physics. A closer look reveals many interesting phenomena and mathematical or numerical difficulties, such as true error analysis and adaptivity, modelling of multi-phase phenomena or fitting problems, stiff terms in convection/diffusion equations and sources. To overcome existing problems and to find solution methods for future applications requires many efforts and always new developments. The goal of The International Symposium on Finite Volumes for Complex Applications VI is to bring together mathematicians, physicists and engineers dealing with Finite Volume Techniques in a wide context. This book, divided in two volumes, brings a critical look at the subject (new ideas, limits or drawbacks of methods, theoretical as well as applied topics).
The papers in this volume were presented at the 4th International Conference on Large-Scale Scientific Computations ICLSSC 2003. It was held in Sozopol, Bulgaria, June 4-8, 2003. The conference was organized and sponsored by the Central Laboratory for Parallel Processing at the Bulgarian Academy of Sciences. Support was also provided from the Center of Excellence "BIS 21" (funded by the European Commission), SIAM and GAMM. A co-organizer of this traditional scientific meeting was the Division of Numerical Analysis and Statistics of the University of Rousse. The success of the conference and the present volume in particular are the outcome of the joint efforts of many colleagues from various ...
The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many ...
The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Altogether, a rather comprehensive overview is given of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based ...
This volume comprises the first part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023. The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or s...