You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of two conferences on Inverse Problems and Applications, held in 2012, to celebrate the work of Gunther Uhlmann. The first conference was held at the University of California, Irvine, from June 18-22, 2012, and the second was held at Zhejiang University, Hangzhou, China, from September 17-21, 2012. The topics covered include inverse problems in medical imaging, scattering theory, geometry and image processing, and the mathematical theory of cloaking, as well as methods related to inverse problems.
This book aims to provide expert guidance to researchers experienced in classical technology, as well as to those new to the field. A variety of perspectives on Photonic Crystal Fibres (PCFs) is presented together with a thorough treatment of the theoretical, physical and mathematical foundations of the optics of PCFs. The range of expertise of the authors is reflected in the depth of coverage, which will benefit those approaching the subject for a variety of reasons and from diverse backgrounds. The study of PCFs enables us to understand how best to optimize their applications in communication or sensing, as devices confining light via new mechanisms (such as photonic bandgap effects). It also assists us in understanding them as physically important structures which require a sophisticated mathematical analysis when considering questions related to the definition of effective refractive index, and the link between large finite systems and infinite periodic systems. This book offers access to essential information on foundation concepts of a dynamic and evolving subject. It is ideal for those who wish to explore further an emerging and important branch of optics and photonics.
This book deals with all aspects of plasmonics, basics, applications and advanced developments. Plasmonics is an emerging field of research dedicated to the resonant interaction of light with metals. The light/matter interaction is strongly enhanced at a nanometer scale which sparks a keen interest of a wide scientific community and offers promising applications in pharmacology, solar energy, nanocircuitry or also light sources. The major breakthroughs of this field of research originate from the recent advances in nanotechnology, imaging and numerical modelling. The book is divided into three main parts: extended surface plasmons polaritons propagating on metallic surfaces, surface plasmons localized on metallic particles, imaging and nanofabrication techniques. The reader will find in the book: Principles and recent advances of plasmonics, a complete description of the physics of surface plasmons, a historical survey with emphasize on the emblematic topic of Wood's anomaly, an overview of modern applications of molecular plasmonics and an extensive description of imaging and fabrications techniques.
The focus of this book lies at the meeting point of electromagnetic waveguides and photonic crystals. Although these are both widely studied topics, they have been kept apart until recently. The purpose of the first edition of this book was to give state-of-the-art theoretical and numerical viewpoints about exotic fibres which use “photonic crystal effects” and consequently exhibit some remarkable properties.Since that first edition, photonic crystal fibres have become an important and effective optical device. In this second edition, the description of the theoretical and numerical tools used to study these fibres is enhanced, whilst up-to-date information about the properties, applications and fabrication of these fibres is added./a
Since it was first published in 1995, Photonic Crystals has remained the definitive text for both undergraduates and researchers on photonic band-gap materials and their use in controlling the propagation of light. This newly expanded and revised edition covers the latest developments in the field, providing the most up-to-date, concise, and comprehensive book available on these novel materials and their applications. Starting from Maxwell's equations and Fourier analysis, the authors develop the theoretical tools of photonics using principles of linear algebra and symmetry, emphasizing analogies with traditional solid-state physics and quantum theory. They then investigate the unique phenom...
This publication showcases the work of UK mathematicians and statisticians by describing industrial problems that have been successfully solved, together with a summary of the financial and/or societal impact that arose from the work. The articles are grouped by sector, and include contributions to climate modelling, engineering and health. The articles are based on Impact Case Studies that were submitted to the Research Excellence Framework (REF2014), a UK government sponsored exercise that assessed the research quality within UK universities. There are many publications in the realm of ‘popular mathematics’ as well as a vast research literature that underpins this. This work is aimed a...
For nearly a millennium, universities have searched forknowledge, understanding and truth. Internationally renowned neuroscientist,Professor Maxwell Bennett, evaluates the work of 20 of the greatest scholars inthe University of Sydney’s history and shows how this university’s search hasbenefitted society in manifold ways. The Search forKnowledge and Understanding demonstrates an interdisciplinary approach, asBennett crafts short but insightful biographies of some of the most significantscholars that have worked at Australia’s oldest university over the past halfcentury, in medicine, the life sciences, the physical sciences and thehumanities and social sciences. Bennet provides a striking account of how this particularscholarly community has flourished by nurturing scholars and allowing them withthe intellectual freedom to pursue their passions. The book clarifies thenotion of understanding as it holds in different disciplines and depicts thebenefit the world of scholarship can have on the wider community.
About the book: This book is the first comprehensive review on acoustic metamaterials; novel materials which can manipulate sound waves in surprising ways, which include collimation, focusing, cloaking, sonic screening and extraordinary transmission. It covers both experimental and theoretical aspects of acoustic and elastic waves propagating in structured composites, with a focus on effective properties associated with negative refraction, lensing and cloaking. Most related books in the field address electromagnetic metamaterials and focus on numerical methods, and little (or no) experimental section. Each chapter will be authored by an acknowledged expert, amongst the topics covered will be experimental results on non-destructive imaging, cloaking by surface water waves, flexural waves in thin plates. Applications in medical ultrasound imaging and modeling of metamaterials will be emphasized too. The book can serve as a reference for researchers who wish to build a solid foundation of wave propagation in this class of novel materials.
Provides a comprehensive introduction to the dynamic response of lattice materials, covering the fundamental theory and applications in engineering practice Offers comprehensive treatment of dynamics of lattice materials and periodic materials in general, including phononic crystals and elastic metamaterials Provides an in depth introduction to elastostatics and elastodynamics of lattice materials Covers advanced topics such as damping, nonlinearity, instability, impact and nanoscale systems Introduces contemporary concepts including pentamodes, local resonance and inertial amplification Includes chapters on fast computation and design optimization tools Topics are introduced using simple systems and generalized to more complex structures with a focus on dispersion characteristics