You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In the evolving environment of energy extraction, the conventional mindset that prioritizes profitability at the expense of safety and environmental concerns is becoming increasingly obsolete. The outdated dichotomy between economic gains and ecological responsibility not only risks environmental incidents but also undermines corporate standing and shared values. With stringent Environmental, Social, and Governance (ESG) requirements and energy transition imperatives, oil and gas operators in unconventional Fields face the challenge of navigating a web of compliance and sustainability mandates. There is a need for a paradigm shift, a comprehensive framework that integrates profitability, tec...
Emerging Technologies in Hydraulic Fracturing and Gas Flow Modelling features the latest strategies for exploiting depleted and unconventional petroleum rock formations as well as simulating associated gas flow mechanisms. The book covers a broad range of multivarious stimulation methods currently applied in practice. It introduces new stimulation techniques including a comprehensive description of interactions between formation/hydraulic fracturing fluids and the host rock material. It provides further insight into practices aimed at advancing the operation of hydrocarbon reservoirs and can be used either as a standalone resource or in combination with other related literature. The book can serve as a propaedeutic resource and is appropriate for those seeking rudimentary information on the exploitation of ultra-impermeable oil and gas reservoirs. Professionals and researchers in the field of petroleum, civil, oil and gas, geotechnical and geological engineering who are interested in the production of unconventional petroleum resources as well as students undertaking studies in similar subject areas will find this to be an instructional reference.
Despite the growing emphasis on energy efficiency in building design, our indoor environments often fall short of providing optimal conditions for health and well-being. Indoor air quality, temperature, and lighting levels play crucial roles in occupant health, yet they are frequently overlooked in building practices. This oversight leads to environments that can harm health, contributing to respiratory problems, allergies, and reduced productivity. Design Strategies for Efficient and Sustainable Building Facilities offers a comprehensive solution. We delve into recent advances in building design, construction, and operation that prioritize energy efficiency and occupant health. By incorporating intelligent sensors, automation systems, and renewable energy sources like solar and wind power, buildings can be transformed into healthy, sustainable spaces that promote well-being. This book is tailored for researchers, professionals, university professors, and master's and doctoral students who seek to advance sustainable building practices.
Carbon capture and storage (CCS) has been considered as a practical way in sequestering the huge anthropogenic CO2 amount with a reasonable cost until a more pragmatic solution appears. The CCS can work as a bridge before fulfilling the no-CO2 era of the future by applying to large-scale CO2 emitting facilities. But CCS appears to lose some passion by the lack of progress in technical developments and in commercial success stories other than EOR. This is the time to go back to basics, starting from finding a solution in small steps. The CCS technology desperately needs far newer ideas and breakthroughs that can overcome earlier attempts through improving, modifying, and switching the known principles. This book tries to give some insight into developing an urgently needed technical breakthrough through the recent advances in CCS research, in addition to the available small steps like soil carbon sequestration. This book provides the fundamental and practical information for researchers and graduate students who want to review the current technical status and to bring in new ideas to the conventional CCS technologies.
Formation Damage during Improved Oil Recovery: Fundamentals and Applications bridges the gap between theoretical knowledge and field practice by presenting information on formation damage issues that arise during enhanced oil recovery. Multi-contributed technical chapters include sections on modeling and simulation, lab experiments, field case studies, and newly proposed technologies and methods that are related to formation damage during secondary and tertiary recovery processes in both conventional and unconventional reservoirs. Focusing on both the fundamental theories related to EOR and formation damage, this reference helps engineers formulate integrated and systematic designs for applying EOR processes while also considering formation damage issues. - Presents the first complete reference addressing formation damage as a result of enhanced oil recovery - Provides the mechanisms for formation damage issues that are coupled with EOR - Suggests appropriate preventative actions or responses - Delivers a structured approach on how to understand the fundamental theories, practical challenges and solutions
This book is intended as a reference book for advanced graduate students and research engineers in shale gas development or rock mechanical engineering. Globally, there is widespread interest in exploiting shale gas resources to meet rising energy demands, maintain energy security and stability in supply and reduce dependence on higher carbon sources of energy, namely coal and oil. However, extracting shale gas is a resource intensive process and is dependent on the geological and geomechanical characteristics of the source rocks, making the development of certain formations uneconomic using current technologies. Therefore, evaluation of the physical and mechanical properties of shale, toget...
Unconventional Shale Gas Development: Lessons Learned gives engineers the latest research developments and practical applications in today's operations. Comprised of both academic and corporate contributors, a balanced critical review on technologies utilized are covered. Environmental topics are presented, including produced water management and sustainable operations in gas systems. Machine learning applications, well integrity and economic challenges are also covered to get the engineer up-to-speed. With its critical elements, case studies, history plot visuals and flow charts, the book delivers a critical reference to get today's petroleum engineers updated on the latest research and applications surrounding shale gas systems. - Bridges the gap between the latest research developments and practical applications through case studies and workflow charts - Helps readers understand the latest developments from the balanced viewpoint of academic and corporate contributors - Considers environmental and sustainable operations in shale gas systems, including produced water management
The Directory of Geoscience Departments 50th Edition is the most comprehensive directory and source of information about geosciences departments and researchers available. It is an invaluable resource for individuals working in the geosciences or must identify or work with specialists on the issues of Earth, Environmental, and related sciences and engineering fields. The Directory of Geoscience Departments 50th Edition provides a state/country-sorted listing of nearly 2300 geoscience departments, research departments, institutes, and their faculty and staff. Information on contact information for departments and individuals is provided, as well as details on department enrollments, faculty specialties, and the date and source of faculty and staff's highest degree. New in the 50th edition: Listing of all US and Canadian geoscience theses and dissertations accepted in 2012 that have been reported to GeoRef Information Services, as well as a listing of faculty by their research specialty.
Transport in Shale Reservoirs fills the need for a necessary, integrative approach on shale reservoirs. It delivers both the fundamental theories of transport in shale reservoirs and the most recent advancements in the recovery of shale oil and gas in one convenient reference. Shale reservoirs have distinctive features dissimilar to those of conventional reservoirs, thus an accurate evaluation on the behavior of shale gas reservoirs requires an integrated understanding on their characteristics and the transport of reservoir and fluids. - Updates on the various transport mechanisms in shale, such as molecular diffusion and phase behavior in nano-pores - Applies theory to practice through simulation in both shale oil and gas - Presents an up-to-date reference on remaining challenges, such as organic material in the shale simulation and multicomponent transport in CO2 injection processes
The stimulation of unconventional hydrocarbon reservoirs is proven to improve their productivity to an extent that has rendered them economically viable. Generally, the stimulation design is a complex process dependent on intertwining factors such as the history of the formation, rock and reservoir fluid type, lithology and structural layout of the formation, cost, time, etc. A holistic grasp of these can be daunting, especially for people without sufficient experience and/or expertise in the exploitation of unconventional hydrocarbon reserves. This book presents the key facets integral to producing unconventional resources, and how the different components, if pieced together, can be used t...