You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Focuses on the effects of porosity and microcracking on the physical properties of ceramics, particularly nominally single phase ceramics. The book elucidates the fundamental interrelationships determining the development and use of materials for actual and potential engineering needs. It aims to help in the understanding of porosity effects on other materials, from ceramic composties, cements and plasters to rocks, metals and polymers.;College or university bookshops may order five or more copies at a special student price, available on request.
Bridging the gap between textbook science and real-world engineering and operational applications, this reference presents comprehensive and easy-to-follow summaries and evaluations of fabrication techniques for ceramic and ceramic composite specimens and components. The author addresses both conventional and alternative powder-based fabrication, chemical vapor deposition, melt processing, and reaction processing. Topics include the preparation of ceramic powders, plastic forming, colloidal processing, the use of additives to aid densification, hot pressing, the fabrication of filaments for reinforcement, rapid prototyping, and gaseous impurities.
This book presents a comprehensive review, evaluation, and summary of the dependence of mechanical properties on grain and particle parameters of monolithic ceramics and ceramic composites. Emphasizing the critical link between fabrication and ceramic performance, the book covers the grain dependence of monolithic properties and the dependence of ceramic, composite properties on grain and particulate parameters. It includes theoretical and conceptual background, pertinent models, experimental results, a data review, discussion, and a summary or recommendations. Illustrations feature microstructural details while graphs plot data on material hardness, compressive strength, and other pivotal variables.
A snapshot of the central ideas used to control fracture properties of engineered structural metallic materials, Advanced Structural Materials: Properties, Design Optimization, and Applications illustrates the critical role that advanced structural metallic materials play in aerospace, biomedical, automotive, sporting goods, and other indust
Designed for the general engineering student, Introduction to Engineering Materials, Second Edition focuses on materials basics and provides a solid foundation for the non-materials major to understand the properties and limitations of materials. Easy to read and understand, it teaches the beginning engineer what to look for in a particular
Surveying recent developments in coating polymers and plastics in the automotive industry, this book examines proper materials selection, basic processing mechanics, process selection based on cost and coating mechanics, molding, and performance and durability assessments. Techniques for salvaging plastics from used vehicles are highlighted, and North American and European techniques for coating plastics in the automotive industry are compared. The editors are members of the Federation of Societies for Coatings Technology. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com).
Many believe that the silicon/information age is heading to the Age of Biology and that the next frontier in ceramics will most likely require molecular level or nanoscale control. What, then, is the role of ceramics in the age of biology? As we change from an energy-rich society to an energy-declining society, how can ceramic materials appease the
Ceramic materials have proven increasingly important in industry and in the fields of electronics, communications, optics, transportation, medicine, energy conversion and pollution control, aerospace, construction, and recreation. Professionals in these fields often require an improved understanding of the specific ceramics materials they are using
There are many books available on polymer chemistry, properties, and processing, but they do not focus on the practicalities of selecting and using them correctly in the design of structures. Engineering students require an understanding of polymers and composites as well as viscoelasticity, adhesion, damping applications, and tribology in order to
For students ready to advance in their study of metals, Physical Metallurgy combines theoretical concepts, real alloy systems, processing procedures, and examples of real-world applications. The author uses his experience in teaching physical metallurgy at the University of Michigan to convey this topic with greater depth and detail than most introductory materials courses offer. The book follows its introduction of metals with topics that are common to all metals, including solidification, diffusion, surfaces, solid solutions, intermediate phases, dislocations, annealing, and phase transformations. Other chapters focus on specific nonferrous alloy systems and their significant metallurgical...