You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the conference String-Math 2016, which was held from June 27–July 2, 2016, at Collége de France, Paris, France. String-Math is an annual conference covering the most significant progress at the interface of string theory and mathematics. The two fields have had a very fruitful dialogue over the last thirty years, with string theory contributing key ideas which have opened entirely new areas of mathematics and modern mathematics providing powerful concepts and tools to deal with the intricacies of string and quantum field theory. The papers in this volume cover topics ranging from supersymmetric quantum field theories, topological strings, and conformal nets to moduli spaces of curves, representations, instantons, and harmonic maps, with applications to spectral theory and to the geometric Langlands program.
This conference was dedicated to the memory of the great scientist and teacher I Ya Pomeranchuk on the occasion of his 90th birthday. It was multidisciplinary and covered those fields of physics where Pomeranchuk made outstanding contributions OCo including high energy physics, quantum field theory, theory of liquid helium, condensed matter physics, physics of electromagnetic processes in matter, and astrophysics. Most of the plenary talks and reports were given by Pomeranchuk''s former students and coworkers. The proceedings volume provides an excellent review of some important areas of modern physics and reflects the Pomeranchuk school''s contributions to modern physics. It is useful for g...
Superstring theory and its successor, M-theory, hold promises of a deeper understanding of the Standard Model of particle physics, the unification of the four fundamental forces, the quantum theory of gravity, the mysteries of quantum black holes, Big Bang cosmology and, ultimately, their complete synthesis in a final theory of physics. This volume records the proceedings of the major annual international conference on the subject, OC Strings 2000OCO, which involved 42 talks by the world''s leading experts on string theory and M-theory. It will be of interest not only to researchers in the field but also to all those who wish to keep abreast of the latest developments and breakthroughs in th...
This volume contains the proceedings of the Conference on Representation Theory and Algebraic Geometry, held in honor of Joseph Bernstein, from June 11–16, 2017, at the Weizmann Institute of Science and The Hebrew University of Jerusalem. The topics reflect the decisive and diverse impact of Bernstein on representation theory in its broadest scope. The themes include representations of p -adic groups and Hecke algebras in all characteristics, representations of real groups and supergroups, theta correspondence, and automorphic forms.
Topological K-theory is one of the most important invariants for noncommutative algebras. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. This book describes a bivariant K-theory for bornological algebras, which provides a vast generalization of topological K-theory. In addition, it details other approaches to bivariant K-theories for operator algebras. The book studies a number of applications, including K-theory of crossed products, the Baum-Connes assembly map, twisted K-theory with some of its applications, and some variants of the Atiyah-Singer Index Theorem.
In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.
Superstring theory and its successor, M-theory, hold promises of a deeper understanding of the Standard Model of particle physics, the unification of the four fundamental forces, the quantum theory of gravity, the mysteries of quantum black holes, Big Bang cosmology and, ultimately, their complete synthesis in a final theory of physics.This volume records the proceedings of the major annual international conference on the subject, “Strings 2000”, which involved 42 talks by the world's leading experts on string theory and M-theory. It will be of interest not only to researchers in the field but also to all those who wish to keep abreast of the latest developments and breakthroughs in this exciting area of theoretical physics.
Noncommutative differential geometry is a novel approach to geometry, aimed in part at applications in physics. It was founded in the early eighties by the 1982 Fields Medalist Alain Connes on the basis of his fundamental works in operator algebras. It is now a very active branch of mathematics with actual and potential applications to a variety of domains in physics ranging from solid state to quantization of gravity. The strategy is to formulate usual differential geometry in a somewhat unusual manner, using in particular operator algebras and related concepts, so as to be able to plug in noncommutativity in a natural way. Algebraic tools such as K-theory and cyclic cohomology and homology play an important role in this field. It is an important topic both for mathematics and physics.
The Jorge Andr Swieca Summer School is a traditional school in Latin America well known for the high level of its courses and lecturers. This book contains lectures on forefront areas of high energy physics, such as collider physics, neutrino phenomenology, noncommutative field theory, string theory and branes.
The success of the standard model in explaining low energy (≈ 100GeV) physics within the framework of spontaneously broken Yang-Mills theory has given physicists the hope that the Einstein dream of a unified theory of fundamental interactions might be achieved using geometrical methods of local symmetry principles supplemented by consistency requirements such as renormalization, unitarity and, most crucially, compatibility with present low energy data.Merging these principles with the quantum-mechanical notions of spin and statistics led physicists further to develop new theories in the last fifteen years for which the gauge symmetry principle is extended to incorporate supersymmetry and relativistic extended objects - the most famous example being superstrings propagating in curved space-time and having supergravity as their effective field theory.The proceedings represent the latest highlights in the field reported on by active researchers working in this particular area in addition to discussions on future perspectives.