You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Organizing the basic material of complex analysis in a unique manner, the authors of this versatile book aim is to present a precise and concise treatment of those parts of complex analysis that should be familiar to every research mathematician.
The authors’ aim here is to present a precise and concise treatment of those parts of complex analysis that should be familiar to every research mathematician. They follow a path in the tradition of Ahlfors and Bers by dedicating the book to a very precise goal: the statement and proof of the Fundamental Theorem for functions of one complex variable. They discuss the many equivalent ways of understanding the concept of analyticity, and offer a leisure exploration of interesting consequences and applications. Readers should have had undergraduate courses in advanced calculus, linear algebra, and some abstract algebra. No background in complex analysis is required.
This volume presents the proceedings of the I Iberoamerican Congress on Geometry: Cruz del Sur held in Olmué, Chile. The main topic was "The Geometry of Groups: Curves, Abelian Varieties, Theoretical and Computational Aspects". Participants came from all over the world. The volume gathers the expanded contributions from most of the participants in the Congress. Articles reflect the topic in its diversity and unity, and in particular, the work done on the subject by Iberoamerican mathematicians. Original results and surveys are included on the following areas: curves and Riemann surfaces, abelian varieties, and complex dynamics. The approaches are varied, including Kleinian groups, quasiconformal mappings and Teichmüller spaces, function theory, moduli spaces, automorphism groups,merican algebraic geometry, and more.
This volume derives from the second Iberoamerican Congress on Geometry, held in 2001 in Mexico at the Centro de Investigacion en Matematicas A.C., an internationally recognized program of research in pure mathematics. The conference topics were chosen with an eye toward the presentation of new methods, recent results, and the creation of more interconnections between the different research groups working in complex manifolds and hyperbolic geometry. This volume reflects both the unity and the diversity of these subjects. Researchers around the globe have been working on problems concerning Riemann surfaces, as well as a wide scope of other issues: the theory of Teichmuller spaces, theta func...
This volume reflects the proceedings of the International Conference on Representations of Affine and Quantum Affine Algebras and Their Applications held at North Carolina State University (Raleigh). In recent years, the theory of affine and quantum affine Lie algebras has become an important area of mathematical research with numerous applications in other areas of mathematics and physics. Three areas of recent progress are the focus of this volume: affine and quantum affine algebras and their generalizations, vertex operator algebras and their representations, and applications in combinatorics and statistical mechanics. Talks given by leading international experts at the conference offered both overviews on the subjects and current research results. The book nicely presents the interplay of these topics recently occupying "centre stage" in the theory of infinite dimensional Lie theory.
This volume contains the proceedings of an AMS special session held at the 1999 Joint Mathematics Meetings in San Antonio. The participants were an international group of researchers studying singularities from algebraic and analytic viewpoints. The contributed papers contain original results as well as some expository and historical material. This volume is dedicated to Oscar Zariski, on the one hundredth anniversary of his birth. Topics include the role of valuation theory in algebraic geometry with recent applications to the structure of morphisms; algorithmic approaches to resolution of equisingular surface singularities and locally toric varieties; weak subintegral closures of ideals an...
This volume contains the proceedings of the 18th International Conference on Arithmetic, Geometry, Cryptography, and Coding Theory, held (online) from May 31 to June 4, 2021. For over thirty years, the biennial international conference AGC$^2$T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers together to forge connections between arithmetic geometry and its applications to coding theory and to cryptography. The papers illustrate the fruitful interaction between abstract theory and explicit computations, covering a large range of topics, including Belyi maps, Galois representations attached to elliptic curves, reconstruction of curves from their Jacobians, isogeny graphs of abelian varieties, hypergeometric equations, and Drinfeld modules.
This volume presents research and expository papers presented at the third and fifth meetings of the Council for African American Researchers in the Mathematical Sciences (CAARMS). The CAARMS is a group dedicated to organizing an annual conference that showcases the current research primarily, but not exclusively, of African Americans in the mathematical sciences, including mathematics, operations research, statistics, and computer science. Held annually since 1995, significant numbers of researchers have presented their current work in hour-long technical presentations, and graduate students have presented their work in organized poster sessions. The events create an ideal forum for mentoring and networking where attendees can meet researchers and graduate students interested in the same fields. For volumes based on previous CAARMS proceedings, see African Americans in Mathematics II (Volume 252 in the AMS series, Contemporary Mathematics), and African Americans in Mathematics (Volume 34 in the AMS series, DIMACS).
This volume contains the proceedings of two AMS Special Sessions “Recent Developments on Analysis and Computation for Inverse Problems for PDEs,” virtually held on March 13–14, 2021, and “Recent Advances in Inverse Problems for Partial Differential Equations,” virtually held on October 23–24, 2021. The papers in this volume focus on new results on numerical methods for various inverse problems arising in electrical impedance tomography, inverse scattering in radar and optics problems, reconstruction of initial conditions, control of acoustic fields, and stock price forecasting. The authors studied iterative and non-iterative approaches such as optimization-based, globally convergent, sampling, and machine learning-based methods. The volume provides an interesting source on advances in computational inverse problems for partial differential equations.
The articles in this book are based on talks given at the North Texas Logic Conference in October of 2004. The main goal of the editors was to collect articles representing diverse fields within logic that would both contain significant new results and be accessible to readers with a general background in logic. Included in the book is a problem list, jointly compiled by the speakers, that reflects some of the most important questions in various areas of logic. This book should be useful to graduate students and researchers alike across the spectrum of mathematical logic.