You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is designed to be a long term career reference. The chapters present modern procedures. This is a how-to-book with a difference. These chapters: - reveal the background information about working with salt loving organisms, - are loaded with information about how experiments are conducted under high salt, - provide information about analyses that work under these conditions and those that may not, - present a wide range of details from laboratory designs to equipment used and even to simple anecdotal hints that can only come from experience. Microbiological training focuses largely on the growth, the handling and the study of the microbes associated with humans and animals. Yet the largest proportion of the Earth’s microbiota lives in saline environments such as the Oceans, saline deserts and terminal hypersaline environments. This need for salt can be intimidating for those interested in entering the field or for those interested in understanding how such research is accomplished.
Modern methods and approaches, such as the analysis of molecular sequences to infer evolutionary relationships among organisms, have provided vast new sets of data to further our understanding ofliving organisms, but there remain enigmas in the biological world that will keep scientists working and thinking for decades. Microorganisms by virtue of their small size and almost unbounded diversity provide ample examples of intriguing mysteries that are being challenged with all of the techniques the modern scientific arsenal can provide. One whole arena of this battle to resolve puzzling mysteries about various microorganisms is the almost unbelievable ability of many micro-organisms to live in extreme environments. Whether the challenge is extreme heat, cold, pressure, hyper salinity, alkalinity or acidity, some micro-organisms live now where no life might seem possible. This fascinating state of affairs is the context for this present volume edited by Joseph Seckbach. This Volume is a compilation of many of the especially interesting questions and biological challenges that arise in the consideration of microorganisms in general and the extremophiles in particular.
For many of us, these simple rewards are suf The purpose of this briefforeword is unchanged from the first edition; it is simply to make you, ficiently gratifying so that we have chosen to the reader, hungry for the scientific feast that spend our scientific lives studying these unusual follows. These four volumes on the prokaryotes creatures. In these endeavors many of the strat offer an expanded scientific menu that displays egies and tools as well as much of the philos the biochemical depth and remarkable physi ophy may be traced to the Delft School, passed ological and morphological diversity of prokar on to us by our teachers, Martinus Beijerinck, yote life. The size ofthe volumes might...
Interest in solid waste disposal has been growing since the early 1960s, when researchers emphasized the potential for solid waste to harbor pathogenic microorganisms. Since then, society has become more interested in the environmental impacts of solid waste treatment and disposal, and how biological processes are used to minimize these impacts. This new text provides a basic understanding of the unique microbial ecosystems associated with the decomposition of municipal solid waste (MSW). It addresses the challenges of sampling and assaying microbial activities in MSW and describes preferred methods. The decomposition of MSW under anaerobic conditions in landfills and digestors is described, as well as under aerobioconditions during composting. The Microbiology of Solid Wastes discusses the need to consider MSW as an integrated system of collection, recycling, treatment, and disposal. A better understanding of solid waste microbiology will contribute to safe and economical solid waste management. Microbiologists, environmental engineers, and solid waste managers will all find this a useful reference.
During recent years the subject of extreme environments and extremophiles has become a central topic in modern Biology. The capability of some microorganisms to withstand, and often prefer, the harsh conditions found in such environments is helping to define the physicho-chemicallimits of life and in consequence its essential nature. Halophiles are one of the most representative types of extremophiles, requiring high concentrations of inorganic salts, mostly sodium chloride, to grow and survive. They inhabit hypersaline environments, the distribution and abundance of which dur ing geological eras are attested by the vast amounts of evaporite rocks present in the Earth crust and by their role...
Examines each of these parameters in crucial depth and makes the argument that life forms we would recognize may be more common in our solar system than many assume. Considers exotic forms of life that would not have to rely on carbon as the basic chemical element, solar energy as the main energy source, or water as the primary solvent and the question of detecting bio- and geosignatures of such life forms, ranging from earth environments to deep space. Seeks an operational definition of life and investigate the realm of possibilities that nature offers to realize this very special state of matter. Avoids scientific jargon wherever possible to make this intrinsically interdisciplinary subject understandable to a broad range of readers.
The development of biofilms and their role in public health - particularly drinking water - is often overlooked. Ideal for anyone interested in water related issues, Microbiological Aspects of Biofilms and Drinking Water presents an overview of the public health effects associated with drinking water. It highlights the microbiological aspects relat
Obtaining and analyzing samples is challenging in subsurface science. This first-of-its-kind reference book addresses accomplishments in this field-from drilling to sample work-up. A collaborative approach is taken, involving the efforts of microbiologists, geochemists, hydrologists, and drilling and mining experts to present a comprehensive view of subsurface research. The text provides practical information about obtaining, analyzing, and evaluating subsurface materials; the current status of subsurface microbial ecology; and describes several applications that will interest a variety of readers, including engineers, physical, and life scientists.
Various groups of microorganisms - bacteria, archaea, algae and even fungi - have adapted to a life in a hypersaline environment. Halophilic Microorganisms explores the many-fold aspects of life under these extreme conditions. Several contributions analyze the microbial communities in different hypersaline environments such as salterns, soda lakes, and the Dead Sea or salt sediments. Reviews of their biodiversity, phylogeny, and genetics are given as well as of the diverse adaptation strategies of salt-tolerant or salt-requiring microorganisms. Microorganisms that have adapted to moderate salt concentrations or to habitats with drastic fluctuations are also treated in addition to the extreme halophiles. Their physiological, biochemical and molecular mechanisms developed in response to salinity and high osmotic pressure as well as current and future biotechnological applications are presented.
This book, intended for researchers and students in the fields of microbiology, biochemistry, and biogeochemistry, details the biology and biogeochemistry of various halophilic microorganisms that live in high density saline environments worldwide. These organisms are especially important to biodegradation and hazardous site clean-up. Topics include the biochemistry, genetics, and molecular biology of these organisms; new methods to type them; and osmotic adaption.