You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a comprehensive introduction to Submanifold theory, focusing on general properties of isometric and conformal immersions of Riemannian manifolds into space forms. One main theme is the isometric and conformal deformation problem for submanifolds of arbitrary dimension and codimension. Several relevant classes of submanifolds are also discussed, including constant curvature submanifolds, submanifolds of nonpositive extrinsic curvature, conformally flat submanifolds and real Kaehler submanifolds. This is the first textbook to treat a substantial proportion of the material presented here. The first chapters are suitable for an introductory course on Submanifold theory for students with a basic background on Riemannian geometry. The remaining chapters could be used in a more advanced course by students aiming at initiating research on the subject, and are also intended to serve as a reference for specialists in the field.
This volume contains research and expository papers on recent advances in foliations and Riemannian geometry. Some of the topics covered in this volume include: topology, geometry, dynamics and analysis of foliations, curvature, submanifold theory, Lie groups and harmonic maps.Among the contributions, readers may find an extensive survey on characteristic classes of Riemannian foliations offering also new results, an article showing the uniform simplicity of certain diffeomorphism groups, an exposition of convergences of contact structures to foliations from the point of view of Thurston's and Thurston-Bennequin's inequalities, a discussion about Fatou-Julia decompositions for foliations and...
This book contains the proceedings of the «Symposium on differential geometry» which took place at the Université de Valenciennes et du Hainaut Cambrésis from July 3, 2007 until July 7, 2007.The main theme of the conference was the differential geometry of submanifolds. Special emphasis was put on the following topics:Lagrangian immersions, Minimal immersions and constant mean curvature immersions, Harmonic maps and harmonic morphisms, Variational problems, Affine differential geometry. This conference follows the tradition of the conferences in the series of « Geometry and Topology of Submanifolds », which started with the Luminy meeting in 1987 and then continued with various meetings at different places in Europe, such as amongst others Avignon, Leeds, Leuven, Brussels, Nordfjordeid, Berlin, Warszawa, Bedlewo and also in China (Beijing, 1998).
This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Técnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics. Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either in Riemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.
This book convenes and deepens generic results about spectral measures, many of them available so far in scattered literature. It starts with classic topics such as Wiener lemma, Strichartz inequality, and the basics of fractal dimensions of measures, progressing to more advanced material, some of them developed by the own authors. A fundamental concept to the mathematical theory of quantum mechanics, the spectral measure relates to the components of the quantum state concerning the energy levels of the Hamiltonian operator and, on the other hand, to the dynamics of such state. However, these correspondences are not immediate, with many nuances and subtleties discovered in recent years. A va...
This volume presents the proceedings of a conference on differential geometry held in honour of the 60th birthday of A M Naveira. The meeting brought together distinguished researchers from a variety of areas in Riemannian geometry. The topics include: geometry of the curvature tensor, variational problems for geometric functionals such as Willmore-Chen tension, volume and energy of foliations and vector fields, and energy of maps. Many papers concern special submanifolds in Riemannian and Lorentzian manifolds, such as those with constant mean (scalar, Gauss, etc.) curvature and those with finite total curvature.
The main topics covered in this volume are global differential geometry and its application to physics. Recent results in many areas are presented, including Yang-Mills fields, harmonic maps, geometry of submanifolds, spectral geometry, complex geometry and soliton aspects of nonlinear PDE arising from geometry and mathematical physics.
This proceedings volume contains peer-reviewed, selected papers and surveys presented at the conference Spectral Theory and Mathematical Physics (STMP) 2018 which was held in Santiago, Chile, at the Pontifical Catholic University of Chile in December 2018. The original works gathered in this volume reveal the state of the art in the area and reflect the intense cooperation between young researchers in spectral theoryand mathematical physics and established specialists in this field. The list of topics covered includes: eigenvalues and resonances for quantum Hamiltonians; spectral shift function and quantum scattering; spectral properties of random operators; magnetic quantum Hamiltonians; microlocal analysis and its applications in mathematical physics. This volume can be of interest both to senior researchers and graduate students pursuing new research topics in Mathematical Physics.
This textbook provides a comprehensive introduction to the mathematical foundations of quantum statistical physics. It presents a conceptually profound yet technically accessible path to the C*-algebraic approach to quantum statistical mechanics, demonstrating how key aspects of thermodynamic equilibrium can be derived as simple corollaries of classical results in convex analysis. Using C*-algebras as examples of ordered vector spaces, this book makes various aspects of C*-algebras and their applications to the mathematical foundations of quantum theory much clearer from both mathematical and physical perspectives. It begins with the simple case of Gibbs states on matrix algebras and gradual...