You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In industry very few metals are used in their pure form; the majority are employed as a combination of a metal with other metals, nonmetals or metalloids. In this way some specific properties are improved, making the alloy more attractive than the pure metal. The present work comprises essential information on alloys in one compact volume. Classification, properties, preparation, applications, and economic aspects are discussed for alloy steels, primary-metal alloys, light-metal alloys, and some other alloy systems. The work is based on more than 30 articles from Ullmann's Encyclopedia of Industrial Chemistry and represents the effort of over 60 specialists. It supplies hundreds of top-quality illustrations, diagrams, and charts and provides hand-picked references for further study. An introductory overview of the subject is provided by the editor. The book is a handy yet authoritative reference work for the practicing metallurgist, but also for physical metallurgists, engineers and scientists in industry.
This is the second volume of an advanced textbook on microstructure and properties of materials. (The first volume is on aluminum alloys, nickel-based superalloys, metal matrix composites, polymer matrix composites, ceramics matrix composites, inorganic glasses, superconducting materials and magnetic materials). It covers titanium alloys, titanium aluminides, iron aluminides, iron and steels, iron-based bulk amorphous alloys and nanocrystalline materials.There are many elementary materials science textbooks, but one can find very few advanced texts suitable for graduate school courses. The contributors to this volume are experts in the subject, and hence, together with the first volume, it i...
Proceedings of the European Workshop on Ordering and Disordering held in Grenoble, France, 10-12 July 1991.
Physics of New Materials After the discoveries and applications of superconductors, new ceramics, amorphous and nano-materials, shape memory and other intelligent materials, physics became more and more important, comparable with chemistry, in the research and development of advanced materials. In this book, several important fields of physics-oriented new-materials research and physical means of analyses are selected and their fundamental principles and methods are described in a simple and understandable way. It is suitable as a textbook for university materials science courses.
Derived from the highly acclaimed series Materials Science and Technology, this book covers the properties as well as the present and emerging applications of intermetallics. Mechanical characteristics, microstructure as well as the environmental influence on intermetallics are treated in depth. In addition, the prospects and risks inherent in materials development as well as typical applications of intermetallics are critically assessed. It is the author's aim to provide the basis for understanding the physical mechanisms, which influence the properties of the materials and ultimately their areas of application. Materials covered include: Titanium Aluminides and Related Phases * Nickel Aluminides and Related Phases * Iron Aluminides and Related Phases * Cu-Base Phases * A15 Phases * Laves Phases * Rare-Earth Compound * Beryllides * Silicides Intermetallics is a valuable source of information for researchers and graduate students working in materials science, metallurgy, condensed-matter physics, and engineering.
This volume details the principles underlying rapid solidification processing, material structure and properties, and their applications. This practical resource presents a manifold approach to both amorphous and crystalline rapidly solidified metallic alloys.;Written by over 30 internationally acclaimed specialists in their respective fields, Rapidly Solidified Alloys: surveys nucleation and growth studies in undercooled melts; examines various processes for the production of rapidly solidified alloys; discusses the compaction of amorphous alloys; describes surface remelting treatments for the rapid solidification of surface layers and the resultant improved workpiece properties; covers the...
Physical Metallurgy elucidates the microstructure, transformation and properties of metallic materials by means of solid state physics and chemical thermodynamics. Experimental methods of physical metallurgy are also treated. This third edition includes new sections on the permeation of hydrogen in metals, the Landau theory of martensitic transformation, and order hardening and plasticity of intermetallics. Numerous other sections have been brought up to date in the light of new developments (e.g. scanning tunnelling microscopy, CALPHAD-method, diffusion in glasses, DIGM, recrystallisation). New artwork and references have also been added. Professor Haasen's clear and concise coverage of a remarkably wide range of topics will appeal both to physics students at the threshold of their metallurgical careers, and to metallurgists who are interested in the physical foundation of their field.
The continuing rapid development of materials science and engineering is graphically reflected in the 130 articles in this second Supplementary Volume to the highly acclaimed Encyclopedia of Materials Science and Engineering. Under the guidance of a distinguished Editorial Advisory Board, Professor Robert Cahn has commissioned over 160 authorities worldwide to provide new articles in the expanding areas of composite materials, advanced and traditional ceramics, electronic and superconducting materials, elastomers and polymer applications, wood and paper, industrial minerals, materials characterization, surfaces and interfaces, fundamental physical metallurgy and metals processing, production...
The terms phase transitions and phase transformations are often used in an interchangeable manner in the metallurgical literature. In Phase Transformations, transformations driven by pressure changes, radiation and deformation and those occurring in nanoscale multilayers are brought to the fore. Order-disorder transformations, many of which constitute very good examples of continuous transformations, are dealt with in a comprehensive manner. Almost all types of phase transformations and reactions that are commonly encountered in inorganic materials are covered and the underlying thermodynamic, kinetic and crystallographic aspects elucidated. - Shows readers the advancements in the field - due to enhanced computing power and superior experimental capability - Drawing upon the background and the research experience of the authors, bringing together a wealth of experience - Written essentially from a physical metallurgists view point
Many of the most important properties of materials in high-technology applications are strongly influenced or even controlled by the presence of solid interfaces. In this work, leading international authorities review the broad range of subjects in this field focusing on the atomic level properties of solid interfaces.