You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Heun's equation is a second-order differential equation which crops up in a variety of forms in a wide range of problems in applied mathematics. These include integral equations of potential theory, wave propagation, electrostatic oscillation, and Schrodinger's equation. This volume brings together important research work for the first time, providing an important resource for all those interested in this mathematical topic. Both the current theory and the main areas of application are surveyed, and includes contributions from authoritative researchers.
This book provides engineers with the tools to solve real-world heat transfer problems. It includes advanced topics not covered in other books on the subject. The examples are complex and timely problems that are inherently interesting. It integrates Maple, MATLAB, FEHT, and Engineering Equation Solver (EES) directly with the heat transfer material.
The new standard reference on mathematical functions, replacing the classic but outdated handbook from Abramowitz and Stegun. Includes PDF version.
The subject of this book is the theory of special functions, not considered as a list of functions exhibiting a certain range of properties, but based on the unified study of singularities of second-order ordinary differential equations in the complex domain. The number and characteristics of the singularities serve as a basis for classification of each individual special function. Links between linear special functions (as solutions of linear second-order equations), and non-linear special functions (as solutions of Painlevé equations) are presented as a basic and new result. Many applications to different areas of physics are shown and discussed. The book is written from a practical point of view and will address all those scientists whose work involves applications of mathematical methods. Lecturers, graduate students and researchers will find this a useful text and reference work.
This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.
In this collection, the author has compiled a set of his papers representing some of the highlights of materials chemistry. It features a section on oxidic materials, which includes high-temperature superconductivity, colossal magnetoresistance, electronic phase separation and multiferroics. The author has also included novel methods for making gallium nitride, boron nitride and such materials, by using precursors and the urea decomposition route. Moreover, there is a section dealing with open-framework and hybrid materials of which the latter has a great future since one can make use of the rigidity of inorganic structures and the functionality and flexibility of the organic residues to design materials with novel properties.
This book features reviews by leading experts on the methods and applications of modern forms of microscopy. The recent awards of Nobel Prizes awarded for super-resolution optical microscopy and cryo-electron microscopy have demonstrated the rich scientific opportunities for research in novel microscopies. Earlier Nobel Prizes for electron microscopy (the instrument itself and applications to biology), scanning probe microscopy and holography are a reminder of the central role of microscopy in modern science, from the study of nanostructures in materials science, physics and chemistry to structural biology. Separate chapters are devoted to confocal, fluorescent and related novel optical micr...