You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book differs from other thermodynamics texts in its objective which is to provide engineers with the concepts, tools, and experience needed to solve practical real-world energy problems. The presentation integrates computer tools (e.g., EES) with thermodynamic concepts to allow engineering students and practicing engineers to solve problems they would otherwise not be able to solve. The use of examples, solved and explained in detail, and supported with property diagrams that are drawn to scale, is ubiquitous in this textbook. The examples are not trivial, drill problems, but rather complex and timely real world problems that are of interest by themselves. As with the presentation, the solutions to these examples are complete and do not skip steps. Similarly the book includes numerous end of chapter problems, both typeset and online. Most of these problems are more detailed than those found in other thermodynamics textbooks. The supplements include complete solutions to all exercises, software downloads, and additional content on selected topics. These are available at the book web site www.cambridge.org/KleinandNellis
This book provides engineers with the tools to solve real-world heat transfer problems. It includes advanced topics not covered in other books on the subject. The examples are complex and timely problems that are inherently interesting. It integrates Maple, MATLAB, FEHT, and Engineering Equation Solver (EES) directly with the heat transfer material.
Significantly revised and updated since its first publication in 1996, Absorption Chillers and Heat Pumps, Second Edition discusses the fundamental physics and major applications of absorption chillers. While the popularity of absorption chillers began to dwindle in the United States in the late 1990's, a shift towards sustainability, green buildin
Equips students with the essential knowledge, skills, and confidence to solve real-world heat transfer problems using EES, MATLAB, and FEHT.
This work integrates basic biotechnological methodologies with up-to-date agricultural practices, offering solutions to specific agricultural needs and problems from plant and crop yield to animal husbandry. It presents and evaluates the limitations of classical methodologies and the potential of novel and emergent agriculturally related biotechnologies.
The second edition of this text catches the specialty of anesthesia at what will probably prove to be the apex of its influence and recognition amongst the specialties of medicine. The scientific basis of the specialty is becoming increasingly well delineated. Anesthesiologists have established themselves in local, regional, and national forums as spokespersons not only for the specialty, but also for medicine in general. And the specialty at last may be emerging from the stereotype of a faceless, inarticulate, shy and retiring figure, whose outstanding characteristic was the cloying odor of diethel ether! Technology has moved into the specialty on seven league boots. Just as an example, the...
First multi-year cumulation covers six years: 1965-70.
Although the focus of this textbook is on traditional thermodynamics topics, the book is concerned with introducing the thermal-fluid sciences as well. It is designed for the instructor to select topics and seamlessly combine them with material from other chapters. Pedagogical devices include: learning objectives, chapter overviews and summaries, historical perspectives, and numerous examples, questions, problems and lavish illustrations. Students are encouraged to use the National Institute of Science and Technology (NIST) online properties database.
This text is an introduction to gas-liquid two-phase flow, boiling and condensation for graduate students, professionals, and researchers in mechanical, nuclear, and chemical engineering. The book provides a balanced coverage of two-phase flow and phase change fundamentals, well-established art and science dealing with conventional systems, and the rapidly developing areas of microchannel flow and heat transfer. It is based on the author's more than 15 years of teaching experience. Instructors teaching multiphase flow have had to rely on a multitude of books and reference materials. This book remedies that problem by covering all the topics that are essential for a graduate first course. Among the important areas that are discussed in the book, and are not adequately covered by virtually all the available textbooks, are: two-phase flow model conservation equations and their numerical solution; condensation with and without noncondensables; and two-phase flow, boiling, and condensation in mini and microchannels.