You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
During the past decade model predictive control (MPC), also referred to as receding horizon control or moving horizon control, has become the preferred control strategy for quite a number of industrial processes. There have been many significant advances in this area over the past years, one of the most important ones being its extension to nonlinear systems. This book gives an up-to-date assessment of the current state of the art in the new field of nonlinear model predictive control (NMPC). The main topic areas that appear to be of central importance for NMPC are covered, namely receding horizon control theory, modeling for NMPC, computational aspects of on-line optimization and applicatio...
Artificial Intelligence in Manufacturing: Applications and Case Studies provides detailed technical descriptions of emerging applications of AI in manufacturing using case studies to explain implementation. Artificial intelligence is increasingly being applied to all engineering disciplines, producing insights into how we understand the world and allowing us to create products in new ways. This book unlocks the advantages of this technology for manufacturing by drawing on work by leading researchers who have successfully used it in a range of applications. Processes including additive manufacturing, pharmaceutical manufacturing, painting, chemical engineering and machinery maintenance are all addressed. Case studies, worked examples, basic introductory material and step-by-step instructions on methods make the work accessible to a large group of interested professionals. - Explains innovative computational tools and methods in a practical and systematic way - Addresses a wide range of manufacturing types, including additive, chemical and pharmaceutical - Includes case studies from industry that describe how to overcome the challenges of implementing these methods in practice
In model predictive control (MPC) an optimization problem has to be solved at each time step, which in real-time applications makes it important to solve these efficiently and to have good upper bounds on worst-case solution time. Often for linear MPC problems, the optimization problem in question is a quadratic program (QP) that depends on parameters such as system states and reference signals. A popular class of methods for solving such QPs is active-set methods, where a sequence of linear systems of equations is solved. The primary contribution of this thesis is a method which determines which sequence of subproblems a popular class of such active-set algorithms need to solve, for every p...
This book brings together one hundred and seventy nine selected papers presented at the 2015 International Conference on Design, Manufacturing and Mechatronics (ICDMM2015), which was successfully held in Wuhan, China during April 17-18, 2015.The ICDMM2015 covered a wide range of fundamental studies, technical innovations and industrial applications in advanced design and manufacturing technology, automation and control system, communication system and computer network, signal and image processing, data processing and intelligence system, applied material and material processing technology, power and energy, technology and methods for measure, test, detection and monitoring, applied mechatronics, technology and methods for ship navigation and safety, and other engineering topics.All papers selected here were subjected to a rigorous peer-review process by at least two independent peers. The papers were selected based on innovation, organization, and quality of presentation.The proceedings should be a valuable reference for scientists, engineers and researchers interested in design, manufacturing and mechatronics, as well as graduate students working on related technologies.
Mass production companies have become obliged to reduce their production costs and sell more products with lower profit margins in order to survive in competitive market conditions. The complexity and automation level of machinery are continuously growing. This development calls for some of the most critical issues that are reliability and dependability of automatic systems. In the future, machines will be monitored remotely, and computer-aided techniques will be employed to detect faults in the future, and also there will be unmanned factories where machines and systems communicate to each other, detect their own faults, and can remotely intercept their faults. The pioneer studies of such systems are fault diagnosis studies. Thus, we hope that this book will contribute to the literature in this regard.
Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model In Industrial Data Analytics for Diagnosis and Prognosis - A Random Effects Modelling Approach, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book’s two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover ...
The two-volume set LNCS 7367 and 7368 constitutes the refereed proceedings of the 9th International Symposium on Neural Networks, ISNN 2012, held in Shenyang, China, in July 2012. The 147 revised full papers presented were carefully reviewed and selected from numerous submissions. The contributions are structured in topical sections on mathematical modeling; neurodynamics; cognitive neuroscience; learning algorithms; optimization; pattern recognition; vision; image processing; information processing; neurocontrol; and novel applications.
In the process industries, stiction is the most common performance-limiting valve problem and over the last decade numerous different techniques for overcoming it have been proposed. This book represents a comprehensive presentation of these methods, including their principles, assumptions, strengths and drawbacks. Guidelines and working procedures are provided for the implementation of each method and MATLAB®-based software can be downloaded from www.ualberta.ca/~bhuang/stiction-book enabling readers to apply the methods to their own data. Methods for the limitation of stiction effects are proposed within the general context of: oscillation detection in control loops, stiction detection, diagnosis and stiction quantification and diagnosis of multiple faults. The state-of-the-art algorithms presented in this book are demonstrated and compared in industrial case studies of diverse origin – chemicals, building, mining, pulp and paper, mineral and metal processing.
In this work, an innovative real-time microwave control approach is proposed, to improve the temperature homogeneity under microwave heating. Multiple adaptive or intelligent control structures have been developed, including the model predictive control, neural network control and reinforcement learning control methods. Experimental results prove that these advanced control methods can effectively reduce the final temperature derivations and improve the temperature homogeneity.