You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains papers of leading experts in the modern continuum theory of composite materials. The papers expose in detail the newest ideas, approaches, results and perspectives in this broadly interdisciplinary field ranging from pure and applied mathematics, mechanics, physics and materials science. The emphasis is on mathematical modelling and model analysis of the mechanical behaviour and strength of composites, including methods of predicting effective macroscopic properties (dielectric, elastic, nonlinear, inelastic, plastic and thermoplastic) from known microstructures.
Most materials used in contemporary life and industry are heterogeneous (composites) and multicomponent, possessing a rich and complex internal structure. This internal structure, or microstructure, plays a key role in understanding and controlling the continuum behavior, or macroscopic, of a wide variety of materials. The modeling process is a critical tool for scientists and engineers studying the analysis and experimentation for the micromechanics and behavior of these materials. "Heterogeneous Media" is a critical, in-depth edited survey of the major topics surrounding the modeling and analysis of problems in micromechanics of multicomponent systems, including conceptual and practical as...
Crystals and polycrystals, composites and polymers, grids and multibar systems can be considered as examples of media with microstructure. A characteristic feature of all such models is the existence of scale parameters which are con nected with microgeometry or long-range interacting forces. As a result the cor responding theory must essentially be a nonlocal one. This treatment provides a systematic investigation of the effects of micro structure, inner degrees of freedom and non locality in elastic media. The prop agation of linear and nonlinear waves in dispersive media, static, deterministic and stochastic problems, and the theory of local defects and dislocations are considered in deta...
Here is an accurate and timely account of micromechanics, which spans materials science, mechanical engineering, applied mathematics, technical physics, geophysics, and biology. The book features rigorous and unified theoretical methods of applied mathematics and statistical physics in the material science of microheterogeneous media. Uniquely, it offers a useful demonstration of the systematic and fundamental research of the microstructure of the wide class of heterogeneous materials of natural and synthetic nature.
This book uses asymptotic methods to obtain simple approximate analytic solutions to various problems within mechanics, notably wave processes in heterogeneous materials. Presenting original solutions to common issues within mechanics, this book builds upon years of research to demonstrate the benefits of implementing asymptotic techniques within mechanical engineering and material science. Focusing on linear and nonlinear wave phenomena in complex micro-structured solids, the book determines their global characteristics through analysis of their internal structure, using homogenization and asymptotic procedures, in line with the latest thinking within the field. The book’s cutting-edge me...
This book deals with various computational procedures for multiple repeated analyses (reanalysis) of structures, and presents them in a unified approach. It meets the need for a general text covering the basic concepts and methods as well as recent developments in this area. To clarify the presentation, many illustrative examples and numerical results are demonstrated. Previous books on structural analysis do not cover most of the material presented here.
None
In this book, a new approach to approximation procedures is developed. This new approach is characterized by the common feature that the procedures are accurate without being convergent as the mesh size tends to zero. This lack of convergence is compensated for by the flexibility in the choice of approximating functions, the simplicity of multi-dimensional generalizations, and the possibility of obtaining explicit formulas for the values of various integral and pseudodifferential operators applied to approximating functions. The developed techniques allow the authors to design new classes of high-order quadrature formulas for integral and pseudodifferential operators, to introduce the concept of approximate wavelets, and to develop new efficient numerical and semi-numerical methods for solving boundary value problems of mathematical physics. The book is intended for researchers interested in approximation theory and numerical methods for partial differential and integral equations.
What can be added to the fracture mechanics of metal fatigue that has not already been said since the 1900s? From the view point of the material and structure engineer, there are many aspects of failure by fatigue that are in need of attention, particularly when the size and time of the working components are changed by orders of magnitude from those considered by st traditional means. The 21 century marks an era of technology transition where structures are made larger and devices are made smaller, rendering the method of destructive testing unpractical. While health monitoring entered the field of science and engineering, the practitioners are discovering that the correlation between the s...