You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This monograph is concerned with the interplay between the theory of operator semigroups and spectral theory. The basics on operator semigroups are concisely covered in this self-contained text. Part I deals with the Hille--Yosida and Lumer--Phillips characterizations of semigroup generators, the Trotter--Kato approximation theorem, Kato’s unified treatment of the exponential formula and the Trotter product formula, the Hille--Phillips perturbation theorem, and Stone’s representation of unitary semigroups. Part II explores generalizations of spectral theory’s connection to operator semigroups.
This book represents the most comprehensive and up-to-date collection of information on the topic of computational molecular biology. Bringing the most recent research into the forefront of discussion, Algorithms in Computational Molecular Biology studies the most important and useful algorithms currently being used in the field, and provides related problems. It also succeeds where other titles have failed, in offering a wide range of information from the introductory fundamentals right up to the latest, most advanced levels of study.
This book presents some aspects of the theory of semigroups of operators, mostly from the point of view of its interaction withspectral theory. In order to make it self-contained, a concise description of the basic theory of semigroups, with complete proofs, is included in Part I. Some of the author's recent results, such as the construction of the Hille-Yosida space for general operators, the semi-simplicity manifold, and a Taylor formula for semigroups as functions of their generator, are also included in Part I. Part II describes recent generalizations (most of them in bookform for the first time), including pre-semigroups, semi-simplicity manifolds in situations more general than that considered in Part I, semigroups of unbounded symmetric operators, and an analogous result on "local cosine families" and semi-analytic vectors. It is hoped that this book will inspire more research in this field. This book will be of particular interest to graduate students and researchers working operator theory and its applications.
This textbook contains a detailed and thorough exposition of topics in measure theory and integration. With abundant solved examples and more than 200 problems, the book is written in a motivational and student-friendly manner. Targeted to senior undergraduate and graduate courses in mathematics, it provides a detailed and thorough explanation of all the concepts. Suitable for independent study, the book, the first of the three volumes, contains topics on measure theory, measurable functions, Lebesgue integration, Lebesgue spaces, and abstract measure theory.
This Research Note collects reports of the invited plenary addresses given during the conference Elliptic and Parabolic Partial Differential Equations and Applications held in Capri, Italy, 19-23 September 1994. The conference was devoted to new developments in partial differential equations of elliptic and parabolic type and to their applications in various fields.
This book presents a systematic account of the theory of asymptotic behaviour of semigroups of linear operators acting in a Banach space. The focus is on the relationship between asymptotic behaviour of the semigroup and spectral properties of its infinitesimal generator. The most recent developments in the field are included, such as the Arendt-Batty-Lyubich-Vu theorem, the spectral mapp- ing theorem of Latushkin and Montgomery-Smith, Weis's theorem on stability of positive semigroup in Lp-spaces, the stability theorem for semigroups whose resolvent is bounded in a half-plane, and a systematic theory of individual stability. Addressed to researchers and graduate students with interest in the fields of operator semigroups and evolution equations, this book is self-contained and provides complete proofs.
This book explores the theory of strongly continuous one-parameter semigroups of linear operators. A special feature of the text is an unusually wide range of applications such as to ordinary and partial differential operators, to delay and Volterra equations, and to control theory. Also, the book places an emphasis on philosophical motivation and the historical background.
This book provides a new mathematical theory for the treatment of an ample series of spatial problems of electrodynamics, particle physics, quantum mechanics and elasticity theory. This technique proves to be as powerful for solving the spatial problems of mathematical physics as complex analysis is for solving planar problems. The main analytic tool of the book, a non-harmonic version of hypercomplex analysis recently developed by the authors, is presented in detail. There are given applications of this theory to the boundary value problems of electrodynamics and elasticity theory as well as to the problem of quark confinement. A new approach to the linearization of special classes of the self-duality equation is also considered. Detailed proofs are given throughout. The book contains an extensive bibliography on closely related topics. This book will be of particular interest to academic and professional specialists and students in mathematics and physics who are interested in integral representations for partial differential equations. The book is self-contained and could be used as a main reference for special course seminars on the subject.
This book constitutes the thoroughly refereed post-conference proceedings of the 6th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2013, held in Barcelona, Spain, in February 2013. The 28 revised full papers presented were carefully reviewed and selected from a total of 392 submissions. The papers cover a wide range of topics and are organized in four general topical sections on biomedical electronics and devices; bioinformatics models, methods and algorithms; bio-inspired systems and signal processing; health informatics.