You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An excellent overview of the manifold aspects of modern crystal engineering. From design and preparation to spectroscopy and applications, this handbook both covers and evaluates all aspects of crystal engineering. Clearly structured, it provides an overview of the current status as seen from its various angles as well as a comparison of different techniques and applications. An essential source of high quality information for everyone working in this booming and interdisciplinary field: spectroscopists, physical and inorganic chemists as well as materials scientists working in nanotechnology and the pharmaceutical industry.
Chemistry, physics and biology are by their nature genuinely difficult. Mathematics, however, is man-made, and therefore not as complicated. Two ideas form the basis for this book: 1) to use ordinary mathematics to describe the simplicity in the structure of mathematics and 2) to develop new branches of mathematics to describe natural sciences.Mathematics can be described as the addition, subtraction or multiplication of planes. Using the exponential scale the authors show that the addition of planes gives the polyhedra, or any solid. The substraction of planes gives saddles. The multiplication of planes gives the general saddle equations and the multispirals. The equation of symmetry is der...
Famous mathematical constants include the ratio of circular circumference to diameter, π = 3.14 ..., and the natural logarithm base, e = 2.718 .... Students and professionals can often name a few others, but there are many more buried in the literature and awaiting discovery. How do such constants arise, and why are they important? Here the author renews the search he began in his book Mathematical Constants, adding another 133 essays that broaden the landscape. Topics include the minimality of soap film surfaces, prime numbers, elliptic curves and modular forms, Poisson-Voronoi tessellations, random triangles, Brownian motion, uncertainty inequalities, Prandtl-Blasius flow (from fluid dynamics), Lyapunov exponents, knots and tangles, continued fractions, Galton-Watson trees, electrical capacitance (from potential theory), Zermelo's navigation problem, and the optimal control of a pendulum. Unsolved problems appear virtually everywhere as well. This volume continues an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
The Handbook of Zeolite Science and Technology offers effective analyses ofsalient cases selected expressly for their relevance to current and prospective research. Presenting the principal theoretical and experimental underpinnings of zeolites, this international effort is at once complete and forward-looking, combining fundamental concepts with the most sophisticated data for each scientific subtopic and budding technology. Supplying over 750 figures, and 350 display equations, this impressive achievement in zeolite science observes synthesis through the lens of MFI (ZSM-5 and silicalite). Chapters progress from conceptual building blocks to complex research presentations.
The art of chemistry is to thoroughly understand the properties of molecular compounds and materials and to be able to prepare novel compounds with p- dicted and desirable properties. The basis for progress is to fully appreciate and fundamentally understand the intimate relation between structure and function. The thermodynamic properties (stability, selectivity, redox potential), reactivities (bond breaking and formation, catalysis, electron transfer) and electronic properties (spectroscopy, magnetism) depend on the structure of a compound. Nevertheless, the discovery of novel molecular compounds and materials with exciting prop- ties is often and to a large extent based on serendipity. Fo...
Providing an invaluable resource, this volume contains analysed, evaluated and distilled information on the latest in organometallic and coordination chemistry research and emerging fields. With continued increases in the variety of information available, researchers can find it difficult to keep up to date with the literature in their field. The reviews in this volume range in scope and include recent developments in homogeneous catalysis for the functionalization of carbon dioxide, early transition metal complexes and their uses in medicinal chemistry, homogeneous gold catalysis under microwave irradiation: a greener approach and properties of metal complexes of mesoionic carbenes. This volume is a key reference for researchers in academic and industrial settings.
'This is a book for crystal chemistry lovers written by one of the pioneers of solid-state chemistry.'MRS BulletinDevoted to a diverse group of solid state scientists, the book has two objectives, both relating to structural chemistry: (i) a progressive analytic familiarization with the main parameters that govern the organization of crystallized matter and related crystal structures, (ii) a study of what are the various ways to 'read' a structure far beyond its representation in scientific articles. Hence, the reader will, from numerous examples illustrated in color, analyze what are the main characteristics of these structures, from their geometric characteristics, their coordination polyh...
Drawing on the continued wealth of photochemical research, this volume combines reviews on the latest advances in the field with specific topical highlights. Starting with periodical reports of the recent literature on physical and inorganic aspects, light induced reactions in cryogenic matrices, properties of transition-metal compounds, time-resolved spectroscopy, the exploitation of solar energy and the molecules of colour. Coverage continues with highlighted topics, in the second part, from photoresponsive hydrogels, the tunable photoredox properties of organic dyes, light-driven asymmetric organocatalytic processes, dual gold–photoredox catalysis, the preparation and characterization o...
Challenging the cherished notions of colloidal theory, Barry Ninham and Pierandrea Lo Nostro confront the scientific lore of molecular forces and colloidal science in an incisive and thought-provoking manner. The authors explain the development of these classical theories, discussing amongst other topics electrostatic forces in electrolytes, specific ion effects and hydrophobic interactions. Throughout the book they question assumptions, unearth flaws and present new results and ideas. From such analysis, a qualitative and predictive framework for the field emerges; the impact of this is discussed in the latter half of the book through force behaviour in self assembly. Here, numerous diverse phenomena are explained, from surfactants to biological applications, all richly illustrated with pertinent, intellectually stimulating examples. With mathematics kept to a minimum, and historic facts and anecdotes woven through the text, this is a highly engaging and readable treatment for students and researchers in science and engineering.
Providing an invaluable resource, this volume contains analysed, evaluated and distilled information on the latest in organometallic and coordination chemistry research and emerging fields. With continued increases in the variety of information available, researchers can find it difficult to keep up to date with the literature in their field. The reviews in this volume range in scope and include recent developments in homogeneous catalysis for the functionalization of carbon dioxide, early transition metal complexes and their uses in medicinal chemistry, homogeneous gold catalysis under microwave irradiation: a greener approach and properties of metal complexes of mesoionic carbenes. This volume is a key reference for researchers in academic and industrial settings.