You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
Famous mathematical constants include the ratio of circular circumference to diameter, π = 3.14 ..., and the natural logarithm base, e = 2.718 .... Students and professionals can often name a few others, but there are many more buried in the literature and awaiting discovery. How do such constants arise, and why are they important? Here the author renews the search he began in his book Mathematical Constants, adding another 133 essays that broaden the landscape. Topics include the minimality of soap film surfaces, prime numbers, elliptic curves and modular forms, Poisson–Voronoi tessellations, random triangles, Brownian motion, uncertainty inequalities, Prandtl–Blasius flow (from fluid dynamics), Lyapunov exponents, knots and tangles, continued fractions, Galton–Watson trees, electrical capacitance (from potential theory), Zermelo's navigation problem, and the optimal control of a pendulum. Unsolved problems appear virtually everywhere as well. This volume continues an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
Mathematics is kept alive by the appearance of new, unsolved problems. This book provides a steady supply of easily understood, if not easily solved, problems that can be considered in varying depths by mathematicians at all levels of mathematical maturity. This new edition features lists of references to OEIS, Neal Sloane’s Online Encyclopedia of Integer Sequences, at the end of several of the sections.
Famous mathematical constants include the ratio of circular circumference to diameter, π = 3.14 ..., and the natural logarithm base, e = 2.718 .... Students and professionals can often name a few others, but there are many more buried in the literature and awaiting discovery. How do such constants arise, and why are they important? Here the author renews the search he began in his book Mathematical Constants, adding another 133 essays that broaden the landscape. Topics include the minimality of soap film surfaces, prime numbers, elliptic curves and modular forms, Poisson-Voronoi tessellations, random triangles, Brownian motion, uncertainty inequalities, Prandtl-Blasius flow (from fluid dynamics), Lyapunov exponents, knots and tangles, continued fractions, Galton-Watson trees, electrical capacitance (from potential theory), Zermelo's navigation problem, and the optimal control of a pendulum. Unsolved problems appear virtually everywhere as well. This volume continues an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
Publisher Description
This volume consolidates selected articles from the 2016 Apprenticeship Program at the Fields Institute, part of the larger program on Combinatorial Algebraic Geometry that ran from July through December of 2016. Written primarily by junior mathematicians, the articles cover a range of topics in combinatorial algebraic geometry including curves, surfaces, Grassmannians, convexity, abelian varieties, and moduli spaces. This book bridges the gap between graduate courses and cutting-edge research by connecting historical sources, computation, explicit examples, and new results.
“This superb book is timely and is written with great attention paid to detail, particularly in its referencing of the literature. The book has a wonderful blend of theory and code (MATLAB®) so will be useful both to nonexperts and to experts in the field.” — Alan Laub, Professor, University of California, Los Angeles The only book devoted exclusively to matrix functions, this research monograph gives a thorough treatment of the theory of matrix functions and numerical methods for computing them. The author's elegant presentation focuses on the equivalent definitions of f(A) via the Jordan canonical form, polynomial interpolation, and the Cauchy integral formula, and features an empha...
New mathematical insights and rigorous results are often gained through extensive experimentation using numerical examples or graphical images and analyzing them. Today computer experiments are an integral part of doing mathematics. This allows for a more systematic approach to conducting and replicating experiments. The authors address the role of
A collection of papers concerning Smarandache type functions, numbers, sequences, inteqer algorithms, paradoxes, experimental geometries, algebraic structures, neutrosophic probability, set, and logic, etc.