You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
Famous mathematical constants include the ratio of circular circumference to diameter, π = 3.14 ..., and the natural logarithm base, e = 2.718 .... Students and professionals can often name a few others, but there are many more buried in the literature and awaiting discovery. How do such constants arise, and why are they important? Here the author renews the search he began in his book Mathematical Constants, adding another 133 essays that broaden the landscape. Topics include the minimality of soap film surfaces, prime numbers, elliptic curves and modular forms, Poisson–Voronoi tessellations, random triangles, Brownian motion, uncertainty inequalities, Prandtl–Blasius flow (from fluid dynamics), Lyapunov exponents, knots and tangles, continued fractions, Galton–Watson trees, electrical capacitance (from potential theory), Zermelo's navigation problem, and the optimal control of a pendulum. Unsolved problems appear virtually everywhere as well. This volume continues an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
Second edition sold 2241 copies in N.A. and 1600 ROW. New edition contains 50 percent new material.
Publisher Description
Publisher description
This second edition has all the tables required for elementary statistical methods in the social, business and natural sciences.
This new edition of Analytic Number Theory for Beginners presents a friendly introduction to analytic number theory for both advanced undergraduate and beginning graduate students, and offers a comfortable transition between the two levels. The text starts with a review of elementary number theory and continues on to present less commonly covered topics such as multiplicative functions, the floor function, the use of big $O$, little $o$, and Vinogradov notation, as well as summation formulas. Standard advanced topics follow, such as the Dirichlet $L$-function, Dirichlet's Theorem for primes in arithmetic progressions, the Riemann Zeta function, the Prime Number Theorem, and, new in this seco...
Guenin presents a consensus justification for the use of donated embryos in service of humanitarian ends.
Significant revision of classic reference in special functions.
More than three centuries after its creation, calculus remains a dazzling intellectual achievement and the gateway to higher mathematics. This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth. Now with a new preface by the author, this book documents the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching—a story of genius triumphing over some of the toughest, subtlest problems imaginable. In touring The Calculus Gallery, we can see how it all came to be.