You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Enormous developments have been made in ophthalmology during the last century. Higher precision and newer instrumentation in surgery as well as better examination methods and progress in microbiology have given us access to much more information about the pathological physiology and anatomy that we are confronted with in our various fields of expertise. As we have approached a new millennium we decided to capture some of these new ideas and incorporate them into a conference where we could share our work and benefit from each others' experiences. This book is based on contributions nd presented at the "2 International Conference on Vitreoretinal Diseases" which was held in September 2002 in ...
Metal hydrides are of inestimable importance for the future of hydrogen energy. This unique monograph presents a clear and comprehensive description of the bulk properties of the metal-hydrogen system. The statistical thermodynamics is treated over a very wide range of pressure, temperature and composition. Another prominent feature of the book is its elucidation of the quantum mechanical behavior of interstitial hydrogen atoms, including their states and motion. The important topic of hydrogen interaction with lattice defects and its materials-science implications are also discussed thoroughly. This second edition has been substantially revised and updated.
This book discusses recent advances in the field of translational stroke research. The editors have designed the book to provide new insight into the importance of regeneration and repair mechanisms for stroke victims. The editors have brought together a talented group of international stroke researchers and clinicians to contribute to this volume, which is written for students, researchers and physicians in biotechnology, neurosciences, neurology, neuroradiology and neurosurgery. Throughout the world, stroke is still a leading cause of mortality and morbidity; there are 152,000 strokes in the United Kingdom, 62,000 in Canada, and approximately 15 million people worldwide. Large communities ...
Based on the overall digitalization in all spheres of our lives, Data Science and Artificial Intelligence (AI) are nowadays cornerstones for innovation, problem solutions, and business transformation. Data, whether structured or unstructured, numerical, textual, or audiovisual, put in context with other data or analyzed and processed by smart algorithms, are the basis for intelligent concepts and practical solutions. These solutions address many application areas such as Industry 4.0, the Internet of Things (IoT), smart cities, smart energy generation, and distribution, and environmental management. Innovation dynamics and business opportunities for effective solutions for the essential soci...
The purpose of this book is to present a state of art summary of current knowledge of methods of assessment of radionuclides in the terrestrial and marine environments. It cover the traditional methods of radioactivity measurements such as radiometrics techniques, but also recent developments in the mass spectrometry sector. The book starts with a short preface introducing the subject of the book, summarising content and philosophy of the book, as well as the most important historical achievements. The scientific topics are introduced by description of sampling methods, optimisation of sampling sites and sampling frequency. The recent developments in radiochemical separation methods using chromatography resins for the treatment of actinides, transuranics and other groups of radioelements are also described. No other book is available covering all aspects of environmental radioactivity measurements, although remarkable progress has been made in detection techniques over the last ten years. At present the new methods enable to carry out investigations which were not possible before, either because of lack of sensitivity or because of the fact that they required too large samples.
The research of Antanas Zilinskas has focused on developing models for global optimization, implementing and investigating the corresponding algorithms, and applying those algorithms to practical problems. This volume, dedicated to Professor Zilinskas on the occasion of his 60th birthday, contains new survey papers in which leading researchers from the field present various models and algorithms for solving global optimization problems.
This is the first book to provide a comprehensive and state-of-the-art introduction to the novel and fast-evolving topic of in-situ produced cosmogenic nuclides. It presents an accessible introduction to the theoretical foundations, with explanations of relevant concepts starting at a basic level and building in sophistication. It incorporates, and draws on, methodological discussions and advances achieved within the international CRONUS (Cosmic-Ray Produced Nuclide Systematics) networks. Practical aspects such as sampling, analytical methods and data-interpretation are discussed in detail and an essential sampling checklist is provided. The full range of cosmogenic isotopes is covered and a wide spectrum of in-situ applications are described and illustrated with specific and generic examples of exposure dating, burial dating, erosion and uplift rates, and process model verification. Graduate students and experienced practitioners will find this book a vital source of information on the background concepts and practical applications in geomorphology, geography, soil-science, and geology.
This book brings together recent advances in supercritical technology and other pressurised-solvent systems.
None
The reactor-based laboratory at the Institut Laue-Langevin is recognized as the world's most productive and reliable source of slow neutrons for the study of low energy particle and nuclear physics. The book highlights the impact of about 600 very diverse publications about work performed in these fields during the past more than 30 years of reactor operation at this institute. On one hand neutrons are used as a tool to generate nuclei in excited states for studying their structure and decay, in particular fission. Uniquely sensitive experiments can tell us a great deal about the symmetry characteristics of nuclei and their fission properties. On the other hand, studies with slow neutrons as the object of investigation are complementary to studies at huge particle accelerators. Experiments carried out at the ILL contribute to elucidate basic questions about the building blocks of the Universe by analyzing very precisely subtle neutron properties.