You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Pioneered by the pharmaceutical industry and adapted for the purposes of materials science and engineering, the combinatorial method is now widely considered a watershed in the accelerated discovery, development, and optimization of new materials. Combinatorial Materials Synthesis reveals the gears behind combinatorial materials chemistry and thin-
S. Panchapakesan has made significant contributions to ranking and selection and has published in many other areas of statistics, including order statistics, reliability theory, stochastic inequalities, and inference. Written in his honor, the twenty invited articles in this volume reflect recent advances in these areas and form a tribute to Panchapakesan’s influence and impact on these areas. Featuring theory, methods, applications, and extensive bibliographies with special emphasis on recent literature, this comprehensive reference work will serve researchers, practitioners, and graduate students in the statistical and applied mathematics communities.
At the International Indian Statistical Association Conference, held at McMaster University in Ontario, Canada, participants focused on advancements in theory and methodology of probability and statistics. This is one of two volumes containing invited papers from the meeting. The 32 chapters deal with different topics of interest, including stochastic processes and inference, distributions and characterizations, inference, Bayesian inference, selection methods, regression methods, and methods in health research. The text is ideal for applied mathematicians, statisticians, and researchers in the field.
The idea for this text emerged over several years as the authors participated in research projects related to analysis of data from NASA's RHESSI Small Explorer mission. The data produced over the operational lifetime of this mission inspired many investigations related to a specific science question: the when, where, and how of electron acceleration during solar flares in the stressed magnetic environment of the active Sun. A vital key to unlocking this science problem is the ability to produce high-quality images of hard X-rays produced by bremsstrahlung radiation from electrons accelerated during a solar flare. The only practical way to do this within the technological and budgetary limit...
The death of Professor K.C. Sreedharan Pillai on June 5, 1985 was a heavy loss to many statisticians all around the world. This volume is dedicated to his memory in recog nition of his many contributions in multivariate statis tical analysis. It brings together eminent statisticians Working in multivariate analysis from around the world. The research and expository papers cover a cross-section of recent developments in the field. This volume is especially useful to researchers and to those who want to keep abreast of the latest directions in multivariate statistical analysis. I am grateful to the authors from so many different countries and research institutions who contributed to this volum...
"Describes recent developments and surveys important topics in the areas of multivariate analysis, design of experiments, and survey sampling. Features the work of nearly 50 international leaders."
The exponential distribution is one of the most significant and widely used distribution in statistical practice. It possesses several important statistical properties, and yet exhibits great mathematical tractability. This volume provides a systematic and comprehensive synthesis of the diverse literature on the theory and applications of the expon
Ion beams have been used for decades for characterizing and analyzing materials. Now energetic ion beams are providing ways to modify the materials in unprecedented ways. This book highlights the emergence of high-energy swift heavy ions as a tool for tailoring the properties of materials with nanoscale structures. Swift heavy ions interact with materials by exciting/ionizing electrons without directly moving the atoms. This opens a new horizon towards the 'so-called' soft engineering. The book discusses the ion beam technology emerging from the non-equilibrium conditions and emphasizes the power of controlled irradiation to tailor the properties of various types of materials for specific needs.
Carbon-Based Nanomaterials in Biosystems: Biophysical interface at Lower Dimensions provides a thoroughly comprehensive overview of all major aspects of carbon-based nanomaterials, their biophysical response, and biotechnological application. The book articulates the underlying physics, chemistry, and the basic phenomenon of the broad-range carbon-based nanomaterials (CNMs) with the biological systems particularly the interface analysis. Organized in six sections, it discusses state-of art technological interventions of carbon-based nanomaterials and their application in biomedical sectors in healthcare, food sciences, and technology. The book also highlights the carrying capacity of differe...
For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self...