You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book grew out of lecture notes I used in a course on difference equations that I taught at Trinity University for the past five years. The classes were largely pop ulated by juniors and seniors majoring in Mathematics, Engineering, Chemistry, Computer Science, and Physics. This book is intended to be used as a textbook for a course on difference equations at the level of both advanced undergraduate and beginning graduate. It may also be used as a supplement for engineering courses on discrete systems and control theory. The main prerequisites for most of the material in this book are calculus and linear algebra. However, some topics in later chapters may require some rudiments of advanc...
A must-read for mathematicians, scientists and engineers who want to understand difference equations and discrete dynamics Contains the most complete and comprehenive analysis of the stability of one-dimensional maps or first order difference equations. Has an extensive number of applications in a variety of fields from neural network to host-parasitoid systems. Includes chapters on continued fractions, orthogonal polynomials and asymptotics. Lucid and transparent writing style
This volume holds a collection of articles based on the talks presented at ICDEA 2007 in Lisbon, Portugal. The volume encompasses current topics on stability and bifurcation, chaos, mathematical biology, iteration theory, nonautonomous systems, and stochastic dynamical systems.
While maintaining the lucidity of the first edition, Discrete Chaos, Second Edition: With Applications in Science and Engineering now includes many recent results on global stability, bifurcation, chaos, and fractals. The first five chapters provide the most comprehensive material on discrete dynamical systems, including trace-determinant stability, bifurcation analysis, and the detailed analysis of the center manifold theory. This edition also covers L-systems and the periodic structure of the bulbs in the Mandelbrot set as well as new applications in biology, chemistry, and physics. The principal improvements to this book are the additions of PHASER software on an accompanying downloadable resources and the MapleTM and Mathematica® code available for download online. Incorporating numerous new topics and technology not found in similar texts, Discrete Chaos, Second Edition presents a thorough, up-to-date treatment of the theory and applications of discrete dynamical systems.
The theory of difference equations is now enjoying a period of Renaissance. Witness the large number of papers in which problems, having at first sight no common features, are reduced to the investigation of subsequent iterations of the maps f· IR. m ~ IR. m, m > 0, or (which is, in fact, the same) to difference equations The world of difference equations, which has been almost hidden up to now, begins to open in all its richness. Those experts, who usually use differential equations and, in fact, believe in their universality, are now discovering a completely new approach which re sembles the theory of ordinary differential equations only slightly. Difference equations, which reflect one o...
Comprehensive study focuses on use of calculus of finite differences as an approximation method for solving troublesome differential equations. Elementary difference operations; interpolation and extrapolation; modes of expansion of the solutions of nonlinear equations, applications of difference equations, difference equations associated with functions of two variables, more. Exercises with answers. 1961 edition.
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely propo...
Current standard numerical methods are of little use in solving mathematical problems involving boundary layers. In Robust Computational Techniques for Boundary Layers, the authors construct numerical methods for solving problems involving differential equations that have non-smooth solutions with singularities related to boundary layers. They present a new numerical technique that provides precise results in the boundary layer regions for the problems discussed in the book. They show that this technique can be adapted in a natural way to a real flow problem, and that it can be used to construct benchmark solutions for comparison with solutions found using other numerical techniques. Focusin...
This book comprises selected papers of the 25th International Conference on Difference Equations and Applications, ICDEA 2019, held at UCL, London, UK, in June 2019. The volume details the latest research on difference equations and discrete dynamical systems, and their application to areas such as biology, economics, and the social sciences. Some chapters have a tutorial style and cover the history and more recent developments for a particular topic, such as chaos, bifurcation theory, monotone dynamics, and global stability. Other chapters cover the latest personal research contributions of the author(s) in their particular area of expertise and range from the more technical articles on abstract systems to those that discuss the application of difference equations to real-world problems. The book is of interest to both Ph.D. students and researchers alike who wish to keep abreast of the latest developments in difference equations and discrete dynamical systems.
This volume contains the proceedings of the 22nd International Conference on Difference Equations and Applications, held at Osaka Prefecture University, Osaka, Japan, in July 2016. The conference brought together both experts and novices in the theory and applications of difference equations and discrete dynamical systems. The volume features papers in difference equations and discrete dynamical systems with applications to mathematical sciences and, in particular, mathematical biology and economics. This book will appeal to researchers, scientists, and educators who work in the fields of difference equations, discrete dynamical systems, and their applications.