You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This accessible text presents a unified approach of treating the microstructure and effective properties of heterogeneous media. Part I deals with the quantitative characterization of the microstructure of heterogeneous via theoretical methods; Part II treats a wide variety of effective properties of heterogeneous materials and how they are linked to the microstructure, accomplished by using rigorous methods.
Most materials used in contemporary life and industry are heterogeneous (composites) and multicomponent, possessing a rich and complex internal structure. This internal structure, or microstructure, plays a key role in understanding and controlling the continuum behavior, or macroscopic, of a wide variety of materials. The modeling process is a critical tool for scientists and engineers studying the analysis and experimentation for the micromechanics and behavior of these materials. "Heterogeneous Media" is a critical, in-depth edited survey of the major topics surrounding the modeling and analysis of problems in micromechanics of multicomponent systems, including conceptual and practical as...
This book addresses the emerging needs of the aerospace industry by discussing recent developments and future trends of aeronautic materials. It is aimed at advancing existing materials and fostering the ability to develop novel materials with less weight, increased mechanical properties, more functionality, diverse manufacturing methods, and recyclability. The development of novel materials and multifunctional materials has helped to increase efficiency and safety, reduce costs, and decrease the environmental foot print of the aeronautical industry. In this book, integral metallic structures designed by disruptive concepts, including topology optimization and additive manufacturing, are highlighted.
Modern physics is confronted with a large variety of complex spatial patterns. Although both spatial statisticians and statistical physicists study random geometrical structures, there has been only little interaction between the two up to now because of different traditions and languages. This volume aims to change this situation by presenting in a clear way fundamental concepts of spatial statistics which are of great potential value for condensed matter physics and materials sciences in general, and for porous media, percolation and Gibbs processes in particular. Geometric aspects, in particular ideas of stochastic and integral geometry, play a central role throughout. With nonspecialist researchers and graduate students also in mind, prominent physicists give an excellent introduction here to modern ideas of statistical physics pertinent to this exciting field of research.
This book has its roots in a series of collaborations in the last decade at the interface between statistical physics and cosmology. The speci?c problem which initiated this research was the study of the clustering properties of galaxies as revealed by large redshift surveys, a context in which concepts of modern statistical physics (e. g. scale-invariance, fractality. . ) ?nd ready application. In recent years we have considerably broadened the range of problems in cosmology which we have addressed, treating in particular more theoretical issues about the statistical properties of standard cosmological models. What is common to all this research, however, is that it is informed by a perspec...
This monograph gives a short introduction to the relevant modern parts of discrete geometry, in addition to leading the reader to the frontiers of geometric research on sphere arrangements. The readership is aimed at advanced undergraduate and early graduate students, as well as interested researchers. It contains more than 40 open research problems ideal for graduate students and researchers in mathematics and computer science. Additionally, this book may be considered ideal for a one-semester advanced undergraduate or graduate level course. The core part of this book is based on three lectures given by the author at the Fields Institute during the thematic program on “Discrete Geometry a...
The papers were elicited primarily from Mathematics for Industry: Challenges and Frontiers, a conference sponsored by SIAM in October, 2003.
This monograph describes and discusses the properties of heterogeneous materials, including conductivity, elastic moduli, and dielectrical constant. The book outlines typical experimental methods, and compares the experimental data and the theoretical predictions. This multidisciplinary book will appeal to applied physicists, materials scientists, chemical and mechanical engineers, chemists, and applied mathematicians.
Autonomy -- Hydrodynamics -- Brownian motion -- From Brownian motion to bending beams -- An engineering approach -- The right variables and natural kinds.