You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This handbook examines the dichotomy between the structure of products and their subgraphs. It also features the design of efficient algorithms that recognize products and their subgraphs and explores the relationship between graph parameters of the product and factors. Extensively revised and expanded, this second edition presents full proofs of many important results as well as up-to-date research and conjectures. It illustrates applications of graph products in several areas and contains well over 300 exercises. Supplementary material is available on the book's website.
""Presents the latest in graph domination by leading researchers from around the world-furnishing known results, open research problems, and proof techniques. Maintains standardized terminology and notation throughout for greater accessibility. Covers recent developments in domination in graphs and digraphs, dominating functions, combinatorial problems on chessboards, and more.
Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.
Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science, machine learning, artificial intelligence, computational and systems biology, cognitive science, computational linguistics, and mathematical chemistry. It may also be used as a supplementary textbook in graduate-level seminars on structural graph analysis, complex networks, or network-based machine learning methods.
This edited volume offers a detailed account of the theory of directed graphs from the perspective of important classes of digraphs, with each chapter written by experts on the topic. Outlining fundamental discoveries and new results obtained over recent years, this book provides a comprehensive overview of the latest research in the field. It covers core new results on each of the classes discussed, including chapters on tournaments, planar digraphs, acyclic digraphs, Euler digraphs, graph products, directed width parameters, and algorithms. Detailed indices ease navigation while more than 120 open problems and conjectures ensure that readers are immersed in all aspects of the field. Classes of Directed Graphs provides a valuable reference for graduate students and researchers in computer science, mathematics and operations research. As digraphs are an important modelling tool in other areas of research, this book will also be a useful resource to researchers working in bioinformatics, chemoinformatics, sociology, physics, medicine, etc.
"Provides the first comprehensive treatment of theoretical, algorithmic, and application aspects of domination in graphs-discussing fundamental results and major research accomplishments in an easy-to-understand style. Includes chapters on domination algorithms and NP-completeness as well as frameworks for domination."
This book gives a quick introduction to the theory of foliations, Lie groupoids and Lie algebroids. An important feature is the emphasis on the interplay between these concepts: Lie groupoids form an indispensable tool to study the transverse structure of foliations as well as their noncommutative geometry, while the theory of foliations has immediate applications to the Lie theory of groupoids and their infinitesimal algebroids. The book starts with a detailed presentation of the main classical theorems in the theory of foliations then proceeds to Molino's theory, Lie groupoids, constructing the holonomy groupoid of a foliation and finally Lie algebroids. Among other things, the authors discuss to what extent Lie's theory for Lie groups and Lie algebras holds in the more general context of groupoids and algebroids. Based on the authors' extensive teaching experience, this book contains numerous examples and exercises making it ideal for graduate students and their instructors.