You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Animal cell technology is a growing discipline of cell biology which aims not only to understand the structure, function and behavior of differentiated animal cells, but also to ascertain their ability to be used for industrial and medical purposes. Some of the major goals of animal cell technology include: the clonal expansion of differentiated cells, the optimization of their culture conditions, modulation of their ability for the production of medically and pharmaceutically important proteins and the application of animal cells to gene therapy, artificial organs and functional foods. This volume gives the readers a complete review of the present state-of-the-art research in Japan and other countries where this field is well advanced. The Proceedings will be useful to cell biologists, biochemists, molecular biologists, immunologists, biochemical engineers and to those working in either academic environments or in the biotechnology and pharmacy industries related to animal cell culture.
Animal cell technology is a growing discipline of cell biology which aims not only to understand structures, functions and behaviors of differentiated animal cells, but also to ascertain their abilities to be used for industrial and medical purposes. The goal of animal cell technology includes the clonal expansion of differentiated cells, the optimization of their culture conditions, modulation of their ability to produce proteins of medical and pharmaceutical importantance, and the application of animal cells to gene therapy, artificial organs and the production of functional foods. This volume gives the readers a complete review of the present state-of-the-art and will be useful for those working in either academic environments or in the biotechnology and pharmaceutical sectors, particularly cell biologists, biochemists, molecular biologists, immunologists, biochemical engineers and all other disciplines related to animal cell culture.
Proceedings of the Thirteenth Annual Meeting of the Japanese Association for Animal Cell Technology (JAACT), Fukuoka-Karatsu, November 16-21, 2000
New data on animal cell technology are brought together in this volume, with emphasis given to the basic characterization of cell lines. The merits of different cell culture systems are examined and investigations into the factors influencing cell growth and productivity are presented. A special section deals with the biological properties of proteins produced by engineered animal cells. All those involved in the culture of animal cells will find this volume invaluable.
Complete updates of rapidly expanding fields of animal cell technology Covers all topics from academic to industrial matters
None
Animal cell technology is a growing discipline of cell biology which aims not only to understand structures, functions and behaviors of differentiated animal cells but also to uncover their abilities for industrial and medical purposes. The goal of animal cell technology includes clonal expansion of differentiated cells with useful abilities, optimization of their culture conditions on the industrial scale, modulation of their ability in order efficiently to produce medically and pharmaceutically important proteins, and application of animal cells to gene therapy and formation of artificial organs. This Volume gives the readers a complete review of the present state of the art in Japan, a country where this field is well advanced, as well as in Asia, Europe and the United States. The Proceedings will be useful for cell biologists, biochemists, molecular biologists, biochemical engineers and those in other disciplines related to animal cell culture, working in academic environments as well as in the biotechnology and pharmaceutical industries.
The 18th ESACT meeting was celebrated in Granada (Spain) in May 2003, and was entitled "Animal Cell Technology Meets Genomics", in order to reflect that the emerging technologies in the area of genomics, proteomics and other "-omics"-type disciplines will provide key technological assets to increase knowledge and open new horizons in animal cell technology. During the meeting a variety of top-class emerging technologies were presented together with the lastest advances in more mature industrial areas. The meeting was opened by a first session devoted to the understanding of basic cellular mechanisms, and four sessions focused on applied aspects of animal cell technology: Cell-based therapies and gene-based therapies, target discovery and biopharmaceuticals. The Granada Meeting has also seen a special focus on forefront industrial case studies. The spirit and scientific excellence of the 18th ESACT meeting is now reflected in different chapters of the book. The book presents, in form of short papers, a high number of the contributions to the meeting, and has been prepared with the aim to provide a relevant reference of the current research efforts in Animal Cell Technology.
Regeneration of tissue to replace damaged or injured tissue is the goal of t- sue engineering. Biomaterials like polyglycolic acid, collagen and small-intestinal submuscosa provide a temporary scaffold to guide new tissue growth and or- nization. Typically, they need to be biodegradable, showing good cell atta- ment and proliferation and they should possess appropriate mechanical properties (Kim et al. , 2000). Synthetic polymers ful ll most of these requirements but lack cell-adhesion peptides on their surface to enhance cell attachment. Ce- adhesion peptides are present in ECM proteins like collagen and elastin. Thus a synthetic polymer coated with ECM proteins would result in a scaffold t...
Animal cell technology is a growing discipline of cell biology which aims not only to understand structures, functions and behaviors of differentiated animal cells, but also to ascertain their abilities to be used in industrial and medical purposes. The goal of animal cell technology includes accomplishments of clonal expansion of differentiated cells with useful ability, optimization of their culture conditions, modulation of their ability for production of medically and pharmaceutically important proteins and the application of animal cells to gene therapy, artificial organs and functional foods. This volume gives the readers a complete review of present state-of-the-art in Japan and other countries where this field is well advanced. The Proceedings will be useful for the cell biologists, biochemists, molecular biologists, immunologists, biochemical engineers and other disciplines related to animal cell culture, working in either academic environments or in industries of biotechnology and pharmacy.