You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This text, extensively class-tested over a decade at UC Berkeley and UC San Diego, explains the fundamentals of algorithms in a story line that makes the material enjoyable and easy to digest. Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include:The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated. Carefully chosen advanced topics that can be skipped in a standard one-semester course but can be covered in an advanced algorithms cou...
This text, extensively class-tested over a decade at UC Berkeley and UC San Diego, explains the fundamentals of algorithms in a story line that makes the material enjoyable and easy to digest. Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include: The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated. Carefully chosen advanced topics that can be skipped in a standard one-semester course, but can be covered in an advanced algorithms c...
This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.
Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.
This book constitutes the joint refereed proceedings of the 16th Annual Conference on Computational Learning Theory, COLT 2003, and the 7th Kernel Workshop, Kernel 2003, held in Washington, DC in August 2003. The 47 revised full papers presented together with 5 invited contributions and 8 open problem statements were carefully reviewed and selected from 92 submissions. The papers are organized in topical sections on kernel machines, statistical learning theory, online learning, other approaches, and inductive inference learning.
An introduction to fundamental theories of concurrent computation and associated programming languages for developing distributed and mobile computing systems. Starting from the premise that understanding the foundations of concurrent programming is key to developing distributed computing systems, this book first presents the fundamental theories of concurrent computing and then introduces the programming languages that help develop distributed computing systems at a high level of abstraction. The major theories of concurrent computation—including the π-calculus, the actor model, the join calculus, and mobile ambients—are explained with a focus on how they help design and reason about d...
These are my lecture notes from CS681: Design and Analysis of Algo rithms, a one-semester graduate course I taught at Cornell for three consec utive fall semesters from '88 to '90. The course serves a dual purpose: to cover core material in algorithms for graduate students in computer science preparing for their PhD qualifying exams, and to introduce theory students to some advanced topics in the design and analysis of algorithms. The material is thus a mixture of core and advanced topics. At first I meant these notes to supplement and not supplant a textbook, but over the three years they gradually took on a life of their own. In addition to the notes, I depended heavily on the texts • A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms. Addison-Wesley, 1975. • M. R. Garey and D. S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness. w. H. Freeman, 1979. • R. E. Tarjan, Data Structures and Network Algorithms. SIAM Regional Conference Series in Applied Mathematics 44, 1983. and still recommend them as excellent references.
In these volumes, Robert Sedgewick focuses on practical applications, giving readers all the information, diagrams and real code they need to confidently implement, debug and use the algorithms he presents.
The Routledge Companion to Northeast India is a trans-disciplinary and comprehensive compendium of a vital yet under-researched region in South Asia. It provides a unique guide to prevailing themes, theories, arguments, and history of Northeast India by discussing its life-forms – human and not – languages, landscapes, and lifeways in all its diversity and difference. The companion contains authoritative entries from leading specialists from and on the region and offers clear, concise, and illuminating explanations of key themes and ideas. A hands-on, practical, and comprehensive guide to Northeast India, this companion fills a significant gap in the literature and will be an invaluable teaching, learning, and research resource for scholars and students of Northeast India Studies, South Asian and Southeast Asian societies, culture, politics, humanities, and the social sciences in general.
Thes book has three key features : fundamental data structures and algorithms; algorithm analysis in terms of Big-O running time in introducied early and applied throught; pytohn is used to facilitates the success in using and mastering data strucutes and algorithms.