You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book focuses on the biologically derived adsorbent with numerous applications in wastewater treatment, metal recovery, biosensor development, and so forth. It initiates with the description of biological sources of biosorbents followed by applications of biosorbents, biosorption isotherms, assessment of biosorbents with various tools, pretreatment of biosorbents, and its mode of action. Some less explored areas like separation of radionuclides, biosorption of volatile organic compounds, and animal-based biosorbents are also explained. Features: Focuses on fundamentals, characteristics of flora and fauna-mediated biosorbents used extensively Describes entire aspects of tools and techniques related to assessment and monitoring of biosorbents Includes adsorption kinetics, adsorption isotherm, and mechanism of action of biosorbents Covers advancements in pretreatment methods to enhance the adsorption process of biosorbents Reviews recent applications which include heavy metal removal, dye remediation, and separation of radionuclides and nano-biosorbents This book is aimed at graduate students and researchers in bioprocess engineering, microbiology, and biotechnology.
Many Microorganisms and some macro-organisms can live under extreme conditions. For example, high and low temperature, acidic and alkaline conditions, high salt areas, high pressure, toxic compounds, high level of ionizing radiation, anoxia and absence of light, etc. Many organisms inhabit environments characterized by more than one form of stress (Polyextremophiles). Among them are those who live in hypersaline and alkaline, hot and acidic, cold/hot and high hydrostatic pressure, etc. Polyextremophiles found in desert regions have to copy with intense UV irradiation and desiccation, high as well as low temperatures, and low availability of water and nutrients. This book provides novel results of application to polyextremophiles research ranging from nanotechnology to synthetic biology to the origin of life and beyond.
This textbook on Environmental Biotechnology not only presents an unbiased overview of the practical biological approaches currently employed to address environmental problems, but also equips readers with a working knowledge of the science that underpins them. Starting with the fundamentals of biotechnology, it subsequently provides detailed discussions of global environmental problems including microbes and their interaction with the environment, xenobiotics and their remediation, solid waste management, waste water treatment, bioreactors, biosensors, biomining and biopesticides. This book also covers renewable and non-renewable bioenergy resources, biodiversity and its conservation, and approaches to monitoring biotechnological industries, genetically modified microorganism and foods so as to increase awareness. All chapters are written in a highly accessible style, and each also includes a short bibliography for further research. In summary this textbook offers a valuable asset, allowing students, young researchers and professionals in the biotechnology industry to grasp the basics of environmental biotechnology.
Enzymes are nature’s biocatalysts empowered with high catalytic power and remarkable substrate specificity. Enzymes perform a wide range of functions throughout nature, and guide the biochemistry of life with great precision. The majority of enzymes perform under conditions considered normal for mesophilic, neutrophilic, terrestrial microorganisms. However, the Earth’s biosphere contains several regions that are extreme in comparison, such as hypersaline lakes and pools, hydrothermal vents, cold oceans, dry deserts and areas exposed to intensive radiation. These areas are inhabited by a large number of extremophilic microorganisms which produce enzymes capable of functioning in unusual c...
With clear explanations, real-world examples and updated ancillary material, the 11th edition of Environmental Chemistry emphasizes the concepts essential to the practice of environmental science, technology and chemistry. The format and organization popular in preceding editions is used, including an approach based upon the five environmental spheres and the relationship of environmental chemistry to the key concepts of sustainability, industrial ecology and green chemistry. The new edition provides a comprehensive view of key environmental issues, and significantly looks at diseases and pandemics as an environmental problem influenced by other environmental concerns like climate change. Fe...
The rhizosphere is a very complex environment in which the effects of the plant on soil microorganisms and the effects of the microorganisms on the plant are interacting and are interdependent. Plant root exudates and breakdownproducts attract microbes and feed them and, in turn, the plants often bene?t from the microbes. Interactions among microorg- ismsandplantrootsareessentialfornutritionalrequirementsoftheplant. Plant growth, development and productivity are largely dependent on the soil environment in the root region rhizosphere. The new techniques of studying the rhizosphere enables us to get a much better understanding of the dynamics of the rhizosphere population, such rhizosphere st...
Protein Misfolding, Volume 118, covers the wide spectrum of diseases and disorders that are attributed to protein misfolding, including degenerative and neurodegenerative, cardiovascular, renal, glaucoma, cancer, cystic fibrosis, Gaucher's disease, and many others. Specific chapters cover Mass spectrometric approaches for profiling protein folding and stability, Biomembranes, a key player in protein misfolding, how Genetic and environmental factors interact to disrupt proteostasis and trigger protein misfolding diseases, Formation of oligomers and large amorphous aggregates by intrinsically disordered proteins, Protein misfolding in ER stress with applications to cardiovascular and renal disease, and much more.