You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of this work was to identify the patterns that can induce heating around implanted cardiac pacemakers during MRI and to develop strategies to counteract them. Two approaches were taken: computer simulations of the occurring electromagnetic field distributions and in-vitro experiments using phantoms in real MRI devices, both for conventional bore-hole and new open MRI systems. Using the open MRI, the observed heating could be reduced significantly.
Present Your Research to the World! The World Congress 2009 on Medical Physics and Biomedical Engineering – the triennial scientific meeting of the IUPESM - is the world’s leading forum for presenting the results of current scientific work in health-related physics and technologies to an international audience. With more than 2,800 presentations it will be the biggest conference in the fields of Medical Physics and Biomedical Engineering in 2009! Medical physics, biomedical engineering and bioengineering have been driving forces of innovation and progress in medicine and healthcare over the past two decades. As new key technologies arise with significant potential to open new options in ...
This work provides methods to measure and analyze features of atrial electrograms - especially complex fractionated atrial electrograms (CFAEs) - mathematically. Automated classification of CFAEs into clinical meaningful classes is applied and the newly gained electrogram information is visualized on patient specific 3D models of the atria. Clinical applications of the presented methods showed that quantitative measures of CFAEs reveal beneficial information about the underlying arrhythmia.
It's not uncommon these days to see people complaining about just how complex JavaScript development seems to have become. We can have some sympathy with that view when it's coming from someone new to the language. If you're learning JS, it won't take long for you to be exposed to the enormity of the ecosystem and the sheer number of moving pieces you need to understand (at least conceptually) to build a modern web application. Package management, linting, transpilation, module bundling, minification, source maps, frameworks, unit testing, hot reloading... it can't be denied that this is a lot more complex that just including a couple of script tags in your page and FTPing it up to the serve...
Half of the patients suffering from atrial fibrillation (AF) cannot be treated adequately, today. This book presents multi-scale computational methods to advance our understanding of patho-mechanisms, to improve the diagnosis of patients harboring an arrhythmogenic substrate, and to tailor therapy. The modeling pipeline ranges from ion channels on the subcellular level up to the ECG on the body surface. The tailored therapeutic approaches carry the potential to reduce the burden of AF.
In this work, the physiological effects of time-varying magnetic fields up to 100 kHz have been investigated, namely magnetic stimulation and body warming. Simulation studies were based on numerical calculations on sophisticated cell and body models. In addition, magnetic stimulation thresholds have been determined experimentally.The project was carried out within the scope of the development of Magnetic Particle Imaging, a new imaging technology for medical diagnostics.
German pioneers who developed settlements and businesses in Palestine - revolutionising agricultural production during late 19th and early 20th centuries. Their ventures contributed significantly to the modernisation of Palestine and ultimately Israel.
This book targets three fields of computational multi-scale cardiac modeling. First, advanced models of the cellular atrial electrophysiology and fiber orientation are introduced. Second, novel methods to create patient-specific models of the atria are described. Third, applications of personalized models in basic research and clinical practice are presented. The results mark an important step towards the patient-specific model-based atrial fibrillation diagnosis, understanding and treatment.
Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented.