You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This dissertation studies the logic behind quantum physics, using category theory as the principal tool and conceptual guide. To do so, principles of quantum mechanics are modeled categorically. These categorical quantum models are justified by an embedding into the category of Hilbert spaces, the traditional formalism of quantum physics. In particular, complex numbers emerge without having been prescribed explicitly. Interpreting logic in such categories results in orthomodular property lattices, and furthermore provides a natural setting to consider quantifiers. Finally, topos theory, incorporating categorical logic in a refined way, lets one study a quantum system as if it were classical, in particular leading to a novel mathematical notion of quantum-
Written in lucid language, this valuable text discusses fundamental concepts of von Neumann algebras including bounded linear operators in Hilbert spaces, finite von Neumann algebras, linear forms on algebra of operators, geometry of projections and classification of von Neumann algebras in an easy to understand manner. The revised text covers new material including the first two examples of factors of type II^1, an example of factor of type III and theorems for von Neumann algebras with a cyclic and separating vector. Pedagogical features including solved problems and exercises are interspersed throughout the book.
None
These 35 refereed articles report on recent and original results in various areas of operator theory and connected fields, many of them strongly related to contributions of Sz.-Nagy. The scientific part of the book is preceeded by fifty pages of biographical material, including several photos.
Discusses the fundamentals and latest developments in operator algebras, focusing on continuous and discrete decomposition of factors of type III.