You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book discusses the mutual intersection of two fields of research: evolutionary computation, which can handle tasks such as control of various chaotic systems, and deterministic chaos, which is investigated as a behavioral part of evolutionary algorithms.
This proceedings book gathers papers presented at the 4th International Conference on Advanced Engineering Theory and Applications 2017 (AETA 2017), held on 7–9 December 2017 at Ton Duc Thang University, Ho Chi Minh City, Vietnam. It presents selected papers on 13 topical areas, including robotics, control systems, telecommunications, computer science and more. All selected papers represent interesting ideas and collectively provide a state-of-the-art overview. Readers will find intriguing papers on the design and implementation of control algorithms for aerial and underwater robots, for mechanical systems, efficient protocols for vehicular ad hoc networks, motor control, image and signal processing, energy saving, optimization methods in various fields of electrical engineering, and others. The book also offers a valuable resource for practitioners who want to apply the content discussed to solve real-life problems in their challenging applications. It also addresses common and related subjects in modern electric, electronic and related technologies. As such, it will benefit all scientists and engineers working in the above-mentioned fields of application.
This book presents a collection of new articles written by world-leading experts and active researchers to present their recent finding and progress in the new area of chaotic systems and dynamics, regarding emerging subjects of unconventional chaotic systems and their complex dynamics.It guide readers directly to the research front of the new scientific studies. This book is unique of its kind in the current literature, presenting broad scientific research topics including multistability and hidden attractors in unconventional chaotic systems, such as chaotic systems without equilibria, with only stable equilibria, with a curve or a surface of equilibria. The book describes many novel pheno...
This book addresses two disciplines that have traditionally occupied completely different realms: quantum information and computation, and game theory. Helping readers connect these fields, it appeals to a wide audience, including computer scientists, engineers, mathematicians, physicists, biologists or economists. The book is richly illustrated and basic concepts are accessible to readers with basic training in science. As such it is useful for undergraduate students as well as established academicians and researchers. Further, the didactic and tutorial-like style makes it ideal supplementary reading for courses on quantum information and computation, game theory, cellular automata and simulation.
This present book discusses the application of the methods to astrophysical data from different perspectives. In this book, the reader will encounter interesting chapters that discuss data processing and pulsars, the complexity and information content of our universe, the use of tessellation in astronomy, characterization and classification of astronomical phenomena, identification of extragalactic objects, classification of pulsars and many other interesting chapters. The authors of these chapters are experts in their field and have been carefully selected to create this book so that the authors present to the community a representative publication that shows a unique fusion of artificial intelligence and astrophysics.
Membrane Computing was introduced as a computational paradigm in Natural Computing. The models introduced, called Membrane (or P) Systems, provide a coherent platform to describe and study living cells as computational systems. Membrane Systems have been investigated for their computational aspects and employed to model problems in other fields, like: Computer Science, Linguistics, Biology, Economy, Computer Graphics, Robotics, etc. Their inherent parallelism, heterogeneity and intrinsic versatility allow them to model a broad range of processes and phenomena, being also an efficient means to solve and analyze problems in a novel way. Membrane Computing has been used to model biological syst...
This book provides analytical and numerical methods for the estimation of dimension characteristics (Hausdorff, Fractal, Carathéodory dimensions) for attractors and invariant sets of dynamical systems and cocycles generated by smooth differential equations or maps in finite-dimensional Euclidean spaces or on manifolds. It also discusses stability investigations using estimates based on Lyapunov functions and adapted metrics. Moreover, it introduces various types of Lyapunov dimensions of dynamical systems with respect to an invariant set, based on local, global and uniform Lyapunov exponents, and derives analytical formulas for the Lyapunov dimension of the attractors of the Hénon and Lorenz systems. Lastly, the book presents estimates of the topological entropy for general dynamical systems in metric spaces and estimates of the topological dimension for orbit closures of almost periodic solutions to differential equations.
This book is concerned with recent advances in fitness landscapes. The concept of fitness landscapes originates from theoretical biology and refers to a framework for analysing and visualizing the relationships between genotypes, phenotypes and fitness. These relationships lay at the centre of attempts to mathematically describe evolutionary processes and evolutionary dynamics. The book addresses recent advances in the understanding of fitness landscapes in evolutionary biology and evolutionary computation. In the volume, experts in the field of fitness landscapes present these findings in an integrated way to make it accessible to a number of audiences: senior undergraduate and graduate students in computer science, theoretical biology, physics, applied mathematics and engineering, but also researcher looking for a reference or/and entry point into using fitness landscapes for analysing algorithms. Also practitioners wanting to employ fitness landscape techniques for evaluating bio- and nature-inspired computing algorithms can find valuable material in the book. For teaching proposes, the book could also be used as a reference handbook.
The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules ...
Prediction of behavior of the dynamical systems, analysis and modeling of its structure is vitally important problem in engineering, economy and science today. Examples of such systems can be seen in the world around us and of course in almost every scientific discipline including such “exotic” domains like the earth’s atmosphere, turbulent fluids, economies (exchange rate and stock markets), population growth, physics (control of plasma), information flow in social networks and its dynamics, chemistry and complex networks. To understand such dynamics and to use it in research or industrial applications, it is important to create its models. For this purpose there is rich spectra of me...