Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Transfer Operators, Endomorphisms, and Measurable Partitions
  • Language: en
  • Pages: 167

Transfer Operators, Endomorphisms, and Measurable Partitions

  • Type: Book
  • -
  • Published: 2018-06-21
  • -
  • Publisher: Springer

The subject of this book stands at the crossroads of ergodic theory and measurable dynamics. With an emphasis on irreversible systems, the text presents a framework of multi-resolutions tailored for the study of endomorphisms, beginning with a systematic look at the latter. This entails a whole new set of tools, often quite different from those used for the “easier” and well-documented case of automorphisms. Among them is the construction of a family of positive operators (transfer operators), arising naturally as a dual picture to that of endomorphisms. The setting (close to one initiated by S. Karlin in the context of stochastic processes) is motivated by a number of recent application...

Recent Developments in Fractal Geometry and Dynamical Systems
  • Language: en
  • Pages: 270

Recent Developments in Fractal Geometry and Dynamical Systems

This volume contains the proceedings of the virtual AMS Special Session on Fractal Geometry and Dynamical Systems, held from May 14–15, 2022. The content covers a wide range of topics. It includes nonautonomous dynamics of complex polynomials, theory and applications of polymorphisms, topological and geometric problems related to dynamical systems, and also covers fractal dimensions, including the Hausdorff dimension of fractal interpolation functions. Furthermore, the book contains a discussion of self-similar measures as well as the theory of IFS measures associated with Bratteli diagrams. This book is suitable for graduate students interested in fractal theory, researchers interested in fractal geometry and dynamical systems, and anyone interested in the application of fractals in science and engineering. This book also offers a valuable resource for researchers working on applications of fractals in different fields.

Topics in Dynamics and Ergodic Theory
  • Language: en
  • Pages: 276

Topics in Dynamics and Ergodic Theory

This book contains a collection of survey papers by leading researchers in ergodic theory, low-dimensional and topological dynamics and it comprises nine chapters on a range of important topics. These include: the role and usefulness of ultrafilters in ergodic theory, topological dynamics and Ramsey theory; topological aspects of kneading theory together with an analogous 2-dimensional theory called pruning; the dynamics of Markov odometers, Bratteli-Vershik diagrams and orbit equivalence of non-singular automorphisms; geometric proofs of Mather's connecting and accelerating theorems; recent results in one dimensional smooth dynamics; periodic points of nonexpansive maps; arithmetic dynamics; the defect of factor maps; entropy theory for actions of countable amenable groups.

Algebraic and Topological Dynamics
  • Language: en
  • Pages: 378

Algebraic and Topological Dynamics

This volume contains a collection of articles from the special program on algebraic and topological dynamics and a workshop on dynamical systems held at the Max-Planck Institute (Bonn, Germany). It reflects the extraordinary vitality of dynamical systems in its interaction with a broad range of mathematical subjects. Topics covered in the book include asymptotic geometric analysis, transformation groups, arithmetic dynamics, complex dynamics, symbolic dynamics, statisticalproperties of dynamical systems, and the theory of entropy and chaos. The book is suitable for graduate students and researchers interested in dynamical systems.

From Classical Analysis to Analysis on Fractals
  • Language: en
  • Pages: 294

From Classical Analysis to Analysis on Fractals

Over the course of his distinguished career, Robert Strichartz (1943-2021) had a substantial impact on the field of analysis with his deep, original results in classical harmonic, functional, and spectral analysis, and in the newly developed analysis on fractals. This is the first volume of a tribute to his work and legacy, featuring chapters that reflect his mathematical interests, written by his colleagues and friends. An introductory chapter summarizes his broad and varied mathematical work and highlights his profound contributions as a mathematical mentor. The remaining articles are grouped into three sections – functional and harmonic analysis on Euclidean spaces, analysis on manifolds, and analysis on fractals – and explore Strichartz’ contributions to these areas, as well as some of the latest developments.

Dynamics: Topology and Numbers
  • Language: en
  • Pages: 360

Dynamics: Topology and Numbers

This volume contains the proceedings of the conference Dynamics: Topology and Numbers, held from July 2–6, 2018, at the Max Planck Institute for Mathematics, Bonn, Germany. The papers cover diverse fields of mathematics with a unifying theme of relation to dynamical systems. These include arithmetic geometry, flat geometry, complex dynamics, graph theory, relations to number theory, and topological dynamics. The volume is dedicated to the memory of Sergiy Kolyada and also contains some personal accounts of his life and mathematics.

Trends in Harmonic Analysis and Its Applications
  • Language: en
  • Pages: 218

Trends in Harmonic Analysis and Its Applications

This volume contains the proceedings of the AMS Special Session on Harmonic Analysis and Its Applications held March 29-30, 2014, at the University of Maryland, Baltimore County, Baltimore, MD. It provides an in depth look at the many directions taken by experts in Harmonic Analysis and related areas. The papers cover topics such as frame theory, Gabor analysis, interpolation and Besov spaces on compact manifolds, Cuntz-Krieger algebras, reproducing kernel spaces, solenoids, hypergeometric shift operators and analysis on infinite dimensional groups. Expositions are by leading researchers in the field, both young and established. The papers consist of new results or new approaches to solutions, and at the same time provide an introduction into the respective subjects.

Linear Systems, Signal Processing and Hypercomplex Analysis
  • Language: en
  • Pages: 320

Linear Systems, Signal Processing and Hypercomplex Analysis

  • Type: Book
  • -
  • Published: 2019-08-08
  • -
  • Publisher: Springer

This volume includes contributions originating from a conference held at Chapman University during November 14-19, 2017. It presents original research by experts in signal processing, linear systems, operator theory, complex and hypercomplex analysis and related topics.

New Directions in Function Theory: From Complex to Hypercomplex to Non-Commutative
  • Language: en
  • Pages: 389

New Directions in Function Theory: From Complex to Hypercomplex to Non-Commutative

This volume presents selected contributions from experts gathered at Chapman University for a conference held in November 2019 on new directions in function theory. The papers, written by leading researchers in the field, relate to hypercomplex analysis, Schur analysis and de Branges spaces, new aspects of classical function theory, and infinite dimensional analysis. Signal processing constitutes a strong presence in several of the papers.A second volume in this series of conferences, this book will appeal to mathematicians interested in learning about new fields of development in function theory.

Cantor Minimal Systems
  • Language: en
  • Pages: 167

Cantor Minimal Systems

Within the subject of topological dynamics, there has been considerable recent interest in systems where the underlying topological space is a Cantor set. Such systems have an inherently combinatorial nature, and seminal ideas of Anatoly Vershik allowed for a combinatorial model, called the Bratteli-Vershik model, for such systems with no non-trivial closed invariant subsets. This model led to a construction of an ordered abelian group which is an algebraic invariant of the system providing a complete classification of such systems up to orbit equivalence. The goal of this book is to give a statement of this classification result and to develop ideas and techniques leading to it. Rather than being a comprehensive treatment of the area, this book is aimed at students and researchers trying to learn about some surprising connections between dynamics and algebra. The only background material needed is a basic course in group theory and a basic course in general topology.