You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This title gives an overview of composites and biocomposites. It discusses the history of CaPO4/ /polymer biocomposites and hybrid biomaterials, as well as analyzing the latest developments in the field. It also covers bioactivity and biodegradation of CaPO4-based biomaterials.
Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium orthophospha
This book examines the most novel and state-of-the-art applications of biomaterials, with chapters that exemplify approaches with targeted drug delivery, diabetes, neurodegenerative diseases and cranioplasty implants. Expert contributors analyze biomaterials such as calcium phosphate, sol-gel and quenched glasses, metallic and polymer implants, bioactive glass, and polymer composites while also covering important areas such as the soft tissue replacement, apatites, bone regeneration and cell encapsulation. This book is appropriate for biomedical engineers, materials scientists, and clinicians who are seeking to implement the most advanced approaches and technologies with their patients.
Calcium phosphates are key materials to sustain life on Earth as constituent of the gravity-defying bony skeletons of all vertebrates as well as the dentine and enamel materials of teeth. This book contains accounts on the historical development of the scientific knowledge gained on calcium orthophosphates, the latest information on the structure of carbonate-bearing hydroxyapatite, the role played by small amounts of molecular water residing in synthetic hydroxyapatite and bone mineral, as well as the nature of oxyhydroxyapatite and oxyapatite as intermediates during dehydroxylation of hydroxyapatite, pertinent information to unravel the complex processes relevant for plasma-sprayed calcium phosphate coatings on endoprosthetic implants. This book is recommended to industrial and academic professionals in the fields of medical technology, orthopedy, dentistry, biology, materials science, chemistry, environmental engineering, and mineralogy.
This book presents a state-of-the-art review of the latest advances in developing calcium- phosphate bone cements and their applications. It covers the synthesis methods, characterization approaches, material modification and novel binders, as well as the fabrication technologies of calcium-phosphate-based biomaterials in regenerative medicine and their clinical applications. It also highlights methodologies for fabricating scaffolds, biofunctional surfaces/interfaces and subsequently modulating the host response to implantable/injectable materials, and integrates a series of discussions and insights into calcium-phosphate cements and constructs in bone regenerative medicine. As such, the book not only covers the fundamentals but also opens new avenues for meeting future challenges in research and clinical applications.
Bioceramics: Status in Tissue Engineering and Regenerative Medicine (Part 1) provides an in-depth look into the recent advancements in biocompatible ceramics, glasses, and composites for tissue engineering and regenerative medicine. It explores topics ranging from the structure and processing of bioactive glasses to the applications of bioinert and bioresorbable ceramics in medical treatments. The book discusses key aspects of bioceramics, including their therapeutic potential in soft tissue healing and cancer therapy, along with challenges and opportunities for future research. Researchers, bioengineers, and professionals in biomedical sciences will find this volume an essential resource for understanding both the fundamentals and applications of bioceramics. Key Features: - Comprehensive coverage of bioceramics, bioactive glasses, and composites, including their manufacturing techniques. - State-of-the-art insights into bioceramics and glass-ceramics in tissue engineering and regenerative medicine. - Focus on preclinical assessment, clinical applications, challenges, and future perspectives.
As the inorganic constituents of skeletons, dentine and the enamel of teeth in all vertebrates, as well as antlers of male deer, calcium orthophosphates (CaPO4) appear to be the key materials to sustain all life on Earth. Therefore, biologically relevant CaPO4 possess all the necessary features of the biomaterials, such as biocompatibility, bioactivity, bioresorbability, osteoconductivity, osteoinductivity, and appear to be non-toxic, non-inflammatory and non-immunogenic. In this book, the author presents current state-of-the-art applications on three popular types of CaPO4: nano-scaled (nano-dimensional), multiphasic (polyphasic) and amorphous CaPO4. Topics discussed include the preparation, structure, composition, properties and biomedical applications of these types of CaPO4 combined with the specific information for each type. Namely, occurrence in the calcified tissue of mammals is discussed for both nano-scaled and amorphous types of CaPO4; both known and potential formulations, as well as their stability are discussed for multiphasic CaPO4, while both the morphology and the available knowledge on amorphous-to-crystalline transformations are discussed for amorphous CaPO4.
Reflecting the advances made in recent years, this is a comprehensive overview of calcium orthophosphates for bioceramics and biocomposites with a special focus on the detailed description of all those available, including their biological and geological occurrence, preparation, chemical composition, structure-property relationships and applications. In particular, the book discusses the suitability of these orthophosphates for biomedical applications and their use as bone grafts in surgery and medicine. The result is a useful reference for researchers with an academic, medical or commercial background.
Biomedical Materials and Diagnostics Devices provides an up-to-date overview of the fascinating and emerging field of biomedical materials and devices, fabrication, performance, and uses The biomedical materials with the most promising potential combine biocompatibility with the ability to adjust precisely the biological phenomena in a controlled manner. The world market for biomedical and diagnostic devices is expanding rapidly and the pace of academic research resulted in about 50,000 published papers in recent years. It is timely, therefore, to assemble a volume on this important subject. The chapters in the book seek to address progress in successful design strategies for biomedical mate...
This unique volume presents the recent advances in tissue regeneration. The authors are all active researchers in their respective fields with extensive experiences. The focus of the book is on the use of stem cells and nano-structured biomaterials for tissue regeneration/tissue engineering. It includes the use of stem cells, naturally derived extracellular matrix (ECM), synthetic biomimetic nano-fibers, synthetic nano-structured ceramics and synthetic nano-structured polymer/ceramic composites that can help/promote tissue regeneration. Methods on how to produce these nano-structured biomaterials are also discussed in several chapters. Future challenges and perspectives in the field of regenerative medicine (tissue regeneration) are also discussed.