You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Active Braking Control Design for Road Vehicles focuses on two main brake system technologies: hydraulically-activated brakes with on–off dynamics and electromechanical brakes, tailored to brake-by-wire control. The physical differences of such actuators enjoin the use of different control schemes so as to be able fully to exploit their characteristics. The authors show how these different control approaches are complementary, each having specific peculiarities in terms of either performance or of the structural properties of the closed-loop system. They also consider other problems related to the design of braking control systems, namely: • longitudinal vehicle speed estimation and its relationship with braking control system design; • tire–road friction estimation; • direct estimation of tire–road contact forces via in-tire sensors, providing a treatment of active vehicle braking control from a wider perspective linked to both advanced academic research and industrial reality.
Enhanced e-book includes videos Many books have been written on modelling, simulation and control of four-wheeled vehicles (cars, in particular). However, due to the very specific and different dynamics of two-wheeled vehicles, it is very difficult to reuse previous knowledge gained on cars for two-wheeled vehicles. Modelling, Simulation and Control of Two-Wheeled Vehicles presents all of the unique features of two-wheeled vehicles, comprehensively covering the main methods, tools and approaches to address the modelling, simulation and control design issues. With contributions from leading researchers, this book also offers a perspective on the future trends in the field, outlining the chall...
Part of a four-volume set, this book constitutes the refereed proceedings of the 7th International Conference on Computational Science, ICCS 2007, held in Beijing, China in May 2007. The papers cover a large volume of topics in computational science and related areas, from multiscale physics to wireless networks, and from graph theory to tools for program development.
Vehicles are complex systems (non-linear, multi-variable) where the abundance of embedded controllers should ensure better security. This book aims at emphasizing the interest and potential of Linear Parameter Varying methods within the framework of vehicle dynamics, e.g. proposed control-oriented model, complex enough to handle some system non linearities but still simple for control or observer design, take into account the adaptability of the vehicle's response to driving situations, to the driver request and/or to the road sollicitations, manage interactions between various actuators to optimize the dynamic behavior of vehicles. This book results from the 32th International Summer School...
This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple object...
This book is a revision and extension of my 1995 Sourcebook of Control Systems Engineering. Because of the extensions and other modifications, it has been retitled Handbook of Control Systems Engineering, which it is intended to be for its prime audience: advanced undergraduate students, beginning graduate students, and practising engineers needing an understandable review of the field or recent developments which may prove useful. There are several differences between this edition and the first. • Two new chapters on aspects of nonlinear systems have been incorporated. In the first of these, selected material for nonlinear systems is concentrated on four aspects: showing the value of cert...
This book constitutes the refereed proceedings of the First International Conference on Smart Technology, MTYMEX 2017, held in Monterrey, Mexico, in May 2017. The 19 full papers were selected from 30 submissions and cover smart technologies for education, health, robotics, internet of things, virtual augmented and mixed reality technologies, artificial intelligence, gaming, software development, and digital arts.
Increasing complexity and performance and reliability expectations make modeling of automotive system both more difficult and more urgent. Automotive control has slowly evolved from an add-on to classical engine and vehicle design to a key technology to enforce consumption, pollution and safety limits. Modeling, however, is still mainly based on classical methods, even though much progress has been done in the identification community to speed it up and improve it. This book, the product of a workshop of representatives of different communities, offers an insight on how to close the gap and exploit this progress for the next generations of vehicles.
Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on the maximum principle. Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compa...