You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this thesis we study the computational complexity of five NP-hard graph problems. It is widely accepted that, in general, NP-hard problems cannot be solved efficiently, that is, in polynomial time, due to many unsuccessful attempts to prove the contrary. Hence, we aim to identify properties of the inputs other than their length, that make the problem tractable or intractable. We measure these properties via parameters, mappings that assign to each input a nonnegative integer. For a given parameter k, we then attempt to design fixed-parameter algorithms, algorithms that on input q have running time upper bounded by f(k(q)) * |q|^c , where f is a preferably slowly growing function, |q| is t...
An introduction to biological networks and methods for their analysis Analysis of Biological Networks is the first book of its kind to provide readers with a comprehensive introduction to the structural analysis of biological networks at the interface of biology and computer science. The book begins with a brief overview of biological networks and graph theory/graph algorithms and goes on to explore: global network properties, network centralities, network motifs, network clustering, Petri nets, signal transduction and gene regulation networks, protein interaction networks, metabolic networks, phylogenetic networks, ecological networks, and correlation networks. Analysis of Biological Networ...
During the last decade, many novel approaches have been considered for dealing with computationally difficult discrete optimization problems. Such approaches include interior point methods, semidefinite programming techniques, and global optimization. More efficient computational algorithms have been developed and larger problem instances of hard discrete problems have been solved. This progress is due in part to these novel approaches, but also to new computing facilities and massive parallelism. This volume contains the papers presented at the workshop on ``Novel Approaches to Hard Discrete Optimization''. The articles cover a spectrum of issues regarding computationally hard discrete problems.
This book presents a systematic approach to analyze nature-inspired algorithms. Beginning with an introduction to optimization methods and algorithms, this book moves on to provide a unified framework of mathematical analysis for convergence and stability. Specific nature-inspired algorithms include: swarm intelligence, ant colony optimization, particle swarm optimization, bee-inspired algorithms, bat algorithm, firefly algorithm, and cuckoo search. Algorithms are analyzed from a wide spectrum of theories and frameworks to offer insight to the main characteristics of algorithms and understand how and why they work for solving optimization problems. In-depth mathematical analyses are carried out for different perspectives, including complexity theory, fixed point theory, dynamical systems, self-organization, Bayesian framework, Markov chain framework, filter theory, statistical learning, and statistical measures. Students and researchers in optimization, operations research, artificial intelligence, data mining, machine learning, computer science, and management sciences will see the pros and cons of a variety of algorithms through detailed examples and a comparison of algorithms.
Complex Social Networks is a newly emerging (hot) topic with applications in a variety of domains, such as communication networks, engineering networks, social networks, and biological networks. In the last decade, there has been an explosive growth of research on complex real-world networks, a theme that is becoming pervasive in many disciplines, ranging from mathematics and computer science to the social and biological sciences. Optimization of complex communication networks requires a deep understanding of the interplay between the dynamics of the physical network and the information dynamics within the network. Although there are a few books addressing social networks or complex networks, none of them has specially focused on the optimization perspective of studying these networks. This book provides the basic theory of complex networks with several new mathematical approaches and optimization techniques to design and analyze dynamic complex networks. A wide range of applications and optimization problems derived from research areas such as cellular and molecular chemistry, operations research, brain physiology, epidemiology, and ecology.
This text provides the undergraduate chemical engineering student with the necessary tools for problem solving in chemical or bio-engineering processes. In a friendly, simple, and unified framework, the exposition aptly balances theory and practice. It uses minimal mathematical concepts, terms, algorithms, and describes the main aspects of chemical process optimization using MATLAB and GAMS. Numerous examples and case studies are designed for students to understand basic principles of each optimization method and elicit the immediate discovery of practical applications. Problem sets are directly tied to real-world situations most commonly encountered in chemical engineering applications. Cha...
The 4th Annual International Conference on Combinatorial Optimization and Applications (COCOA 2010) took place in Big Island, Hawaii, USA, December 18–20, 2010. Past COCOA conferences were held in Xi’an, China (2007), Newfoundland, Canada (2008)and Huangshan, China (2009). COCOA2010providedaforumforresearchersworkingintheareasofcom- natorial optimization and its applications. In addition to theoretical results, the conference also included recent works on experimental and applied research of general algorithmic interest. The Program Committee received 108 submissions from more than 23 countries and regions, including Australia, Austria, Canada, China, Denmark, France, Germany, Hong Kong,...
This book cuts through the jargon and complicated formulae to focus on the key concepts in sports economics, introducing the fundamentals in a concise and engaging way to give the reader without a background in economics the tools with which to read and apply sports economics in their work. Full of real-world cases and stories, the book offers a short economic history of sport and explains the economic foundations of the world of sport today, from local leagues to mega-events. Covering both amateur and professional sports, it explores and explains the most important issues in contemporary sports economics, from player transfer markets and the rise of women’s sports to the spending behaviour of fans and the growing shadow of corruption. A fascinating read for any student, researcher or practitioner working in sport, or for the general reader who wants to understand the background to many of the most important stories in sport today, this is the only book on sports economics that you will ever need.
This book explores the updated version of the GLOBAL algorithm which contains improvements for a local search algorithm and new Java implementations. Efficiency comparisons to earlier versions and on the increased speed achieved by the parallelization, are detailed. Examples are provided for students as well as researchers and practitioners in optimization, operations research, and mathematics to compose their own scripts with ease. A GLOBAL manual is presented in the appendix to assist new users with modules and test functions. GLOBAL is a successful stochastic multistart global optimization algorithm that has passed several computational tests, and is efficient and reliable for small to medium dimensional global optimization problems. The algorithm uses clustering to ensure efficiency and is modular in regard to the two local search methods it starts with, but it can also easily apply other local techniques. The strength of this algorithm lies in its reliability and adaptive algorithm parameters. The GLOBAL algorithm is free to download also in the earlier Fortran, C, and MATLAB implementations.
This brief explores the Krasnosel'skiĭ-Man (KM) iterative method, which has been extensively employed to find fixed points of nonlinear methods.