You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Focuses on an important aspect of this highly diversified area of condensed state physics: the one-body approximation in the theory of disordered systems. It describes the scope of problems within the framework of this approximation, its use in formulating several basic concepts, and its value in revealing many characteristic features of disordered systems. The book's main focus is on the density of states and the space-time correlation functions, and on their basic thermodynamic and kinetic characteristics. Among the many areas explored are the general properties of the one-body models frequently used and descriptions of selected one-dimensional problems, including closed dynamical equations; these are then used to thoroughly explore the density of states for several systems. In addition, some of the more complex characteristics of one-dimensional disordered systems are examined using the Fokkerr-Planck equations developed earlier in the text. Also includes a description of the general structure of concentration expansions, giving examples of simple applications.
Volume 2 offers three in-depth articles covering significant areas in applied mathematics research. Chapters feature numerous illustrations, extensive background material and technical details, and abundant examples. The authors analyze nonlinear front propagation for a large class of semilinear partial differential equations using probabilistic methods; examine wave localization phenomena in one-dimensional random media; and offer an extensive introduction to certain model equations for nonlinear wave phenomena.
This IMA Volume in Mathematics and its Applications WAVE PROPAGATION IN COMPLEX MEDIA is based on the proceedings of two workshops: • Wavelets, multigrid and other fast algorithms (multipole, FFT) and their use in wave propagation and • Waves in random and other complex media. Both workshops were integral parts of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Gregory Beylkin, Robert Burridge, Ingrid Daubechies, Leonid Pastur, and George Papanicolaou for their excellent work as organizers of these meetings. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO, and the Office of Naval Research (ONR), whos...
None
In the past three decades there has been enormous progress in identifying the essential role that nonlinearity plays in physical systems, including supporting soliton-like solutions and self-trapped sxcitations such as polarons. during the same period, similarly impressive progress has occurred in understanding the effects of disorder in linear quantum problems, especially regarding Anderson localization arising from impurities, random spatial structures, stochastic applied fields, and so forth. These striking consequences of disorder, noise and nonlinearity frequently occur together in physical systems. Yet there have been only limited attempts to develop systematic techniques which can inc...
Condensed matter is one of the most active fields of physics, with a stream of discoveries in areas from superfluidity and magnetism to the optical, electronic and mechanical properties of materials such as semiconductors, polymers and carbon nanotubes. It includes the study of well-characterised solid surfaces, interfaces and nanostructures as well as studies of molecular liquids (molten salts, ionic solutions, liquid metals and semiconductors) and soft matter systems (colloidal suspensions, polymers, surfactants, foams, liquid crystals, membranes, biomolecules etc) including glasses and biological aspects of soft matter. The book presents state-of-the-art research in this exciting field.
Partial differential equations play a central role in many branches of science and engineering. Therefore it is important to solve problems involving them. One aspect of solving a partial differential equation problem is to show that it is well-posed, i. e. , that it has one and only one solution, and that the solution depends continuously on the data of the problem. Another aspect is to obtain detailed quantitative information about the solution. The traditional method for doing this was to find a representation of the solution as a series or integral of known special functions, and then to evaluate the series or integral by numerical or by asymptotic methods. The shortcoming of this method...
Asymptotic methods belong to the, perhaps, most romantic area of modern mathematics. They are widely known and have been used in me chanics, physics and other exact sciences for many, many decades. But more than this, asymptotic ideas are found in all branches of human knowledge, indeed in all areas of life. In this broader context they have not and perhaps cannot be fully formalized. However, they are mar velous, they leave room for fantasy, guesses and intuition; they bring us very near to the border of the realm of art. Many books have been written and published about asymptotic meth ods. Most of them presume a mathematically sophisticated reader. The authors here attempt to describe asym...
The book is devoted to the description of physical effects caused by resonant scattering of quasiparticles by isolated impurity atoms, which can localize electrons and phonons in nanosystems. It takes as its starting point the model of local perturbations by I.M. Lifshits, within which short-range impurity atoms are located at random points of the system. The role of a single impurity center in such systems increases with decreasing size. This book presents the first-ever application of the method of local perturbations to describe the physical properties of a wide range of nanosystems.
Positioning itself at the common boundaries of several disciplines, this work provides new perspectives on modern nanoscale problems where fundamental science meets technology and computer modeling. In addition to well-known computational techniques such as finite-difference schemes and Ewald summation, the book presents a new finite-difference calculus of Flexible Local Approximation Methods (FLAME) that qualitatively improves the numerical accuracy in a variety of problems.