You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book of invited articles offers a collection of high-quality papers in selected and highly topical areas of Applied and Numerical Mathematics and Approximation Theory which have some connection to Wolfgang Dahmen's scientific work. On the occasion of his 60th birthday, leading experts have contributed survey and research papers in the areas of Nonlinear Approximation Theory, Numerical Analysis of Partial Differential and Integral Equations, Computer-Aided Geometric Design, and Learning Theory. The main focus and common theme of all the articles in this volume is the mathematics building the foundation for most efficient numerical algorithms for simulating complex phenomena.
This volume constitutes the thoroughly refereed post-conference proceedings of the 8th International Conference on Mathematical Methods for Curves and Surfaces, MMCS 2012, held in Oslo, Norway, in June/July 2012. The 28 revised full papers presented were carefully reviewed and selected from 135 submissions. The topics range from mathematical analysis of various methods to practical implementation on modern graphics processing units. The papers reflect the newest developments in these fields and also point to the latest literature.
Approximation methods are vital in many challenging applications of computational science and engineering. This is a collection of papers from world experts in a broad variety of relevant applications, including pattern recognition, machine learning, multiscale modelling of fluid flow, metrology, geometric modelling, tomography, signal and image processing. It documents recent theoretical developments which have lead to new trends in approximation, it gives important computational aspects and multidisciplinary applications, thus making it a perfect fit for graduate students and researchers in science and engineering who wish to understand and develop numerical algorithms for the solution of their specific problems. An important feature of the book is that it brings together modern methods from statistics, mathematical modelling and numerical simulation for the solution of relevant problems, with a wide range of inherent scales. Contributions of industrial mathematicians, including representatives from Microsoft and Schlumberger, foster the transfer of the latest approximation methods to real-world applications.
This carefully written text on measure theory with applications to partial differential equations covers general measure theory, Lebesgue spaces of real-valued and vector-valued functions, different notions of measurability for the latter, weak convergence of functions and measures, Radon and Young measures, capacity, and finally applications to quasilinear parabolic problems (in particular, forward-backward equations).
These proceedings were prepared in connection with the international conference Approximation Theory XIII, which was held March 7–10, 2010 in San Antonio, Texas. The conference was the thirteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 144 participants. Previous conferences in the series were held in Austin, Texas (1973, 1976, 1980, 1992), College Station, Texas (1983, 1986, 1989, 1995), Nashville, Tennessee (1998), St. Louis, Missouri (2001), Gatlinburg, Tennessee (2004), and San Antonio, Texas (2007). Along with the many plenary speakers, the contributors to this proceedings provided inspiring talks and set a high standard of exposition in their descriptions of new directions for research. Many relevant topics in approximation theory are included in this book, such as abstract approximation, approximation with constraints, interpolation and smoothing, wavelets and frames, shearlets, orthogonal polynomials, univariate and multivariate splines, and complex approximation.
This comprehensive reference begins with a review of the basics followed by a presentation of flag varieties and finite- and infinite-dimensional representations in classical types and subvarieties of flag varieties and their singularities. Associated varieties and characteristic cycles are covered as well and Kazhdan-Lusztig polynomials are treated. The coverage concludes with a discussion of pattern avoidance and singularities and some recent results on Springer fibers.
The Oxford Handbook of National Security Intelligence is a state-of-the-art work on intelligence and national security. Edited by Loch Johnson, one of the world's leading authorities on the subject, the handbook examines the topic in full, beginning with an examination of the major theories of intelligence. It then shifts its focus to how intelligence agencies operate, how they collect information from around the world, the problems that come with transforming "raw" information into credible analysis, and the difficulties in disseminating intelligence to policymakers. It also considers the balance between secrecy and public accountability, and the ethical dilemmas that covert and counterintelligence operations routinely present to intelligence agencies. Throughout, contributors factor in broader historical and political contexts that are integral to understanding how intelligence agencies function in our information-dominated age.
This text is aimed at graduate students in mathematics and to interested researchers who wish to acquire an in depth understanding of Euclidean Harmonic analysis. The text covers modern topics and techniques in function spaces, atomic decompositions, singular integrals of nonconvolution type and the boundedness and convergence of Fourier series and integrals. The exposition and style are designed to stimulate further study and promote research. Historical information and references are included at the end of each chapter. This third edition includes a new chapter entitled "Multilinear Harmonic Analysis" which focuses on topics related to multilinear operators and their applications. Sections 1.1 and 1.2 are also new in this edition. Numerous corrections have been made to the text from the previous editions and several improvements have been incorporated, such as the adoption of clear and elegant statements. A few more exercises have been added with relevant hints when necessary.
This completely revised and updated edition of the one variable part of the author's classic older book "Iteration Theory of Holomorphic Maps on Taut Manifolds" presents the theory of holomorphic dynamical systems on hyperbolic Riemann surfaces from the very beginning of the subject up to the most recent developments. It is intended both as a reference book for the experts and as an accessible gateway to this beautiful theory for Master and Ph.D. students. It also contains extensive historical notes and references for further readings.
The International Conference of Computational Harmonic Analysis, held in Hong Kong during the period of June 4 OCo 8, 2001, brought together mathematicians and engineers interested in the computational aspects of harmonic analysis. Plenary speakers include W Dahmen, R Q Jia, P W Jones, K S Lau, S L Lee, S Smale, J Smoller, G Strang, M Vetterlli, and M V Wickerhauser. The central theme was wavelet analysis in the broadest sense, covering time-frequency and time-scale analysis, filter banks, fast numerical computations, spline methods, multiscale algorithms, approximation theory, signal processing, and a great variety of applications.This proceedings volume contains sixteen papers from the lectures given by plenary and invited speakers. These include expository articles surveying various aspects of the twenty-year development of wavelet analysis, and original research papers reflecting the wide range of research topics of current interest."